99

=== Prime. Subroutines
Reference llI:
Operating System

Revision 23.0

— DOC10082-2LA

D

Subroutines Reference lll:
Operating System

r s ® = ®= = = ®

Second Edition

Glenn Morrow

This manual documents the software operation of the PRIMOS operating
r‘ system on 50 Series computers and their supporting systems and

utilities as implemented at Master Disk Revision Level 23.0

(Rev. 23.0).

Prime Computer, Inc., Prime Park, Natick, Massachusetts 01760

ii

The information in this document is subject to change without notice and should not be
construed as a commitment by Prime Computer, Inc. Prime Computer, Inc., assumes no
responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or
copied only in accordance with the terms of such license.

Copyright © 1990 by Prime Computer, Inc. All rights reserved.

PRIME, PRIME, PRIMOS, and the Prime logo are registered trademarks of

Prime Computer, Inc. 50 Series, 400, 750, 850, 2250, 2350, 2450, 2455, 2550, 2655,
2755, 2850, 2950, 4050, 4150, 4450, 6150, 6350, 6450, 6550, 6650, 9650, 9655, 9750,
9755, 9950, 9955, 995511, Prime INFORMATION CONNECTION, DISCOVER,
INFO/BASIC, MIDAS, MIDASPLUS, PERFORM, PERFORMER, PRIFORMA,
Prime INFORMATION, PRIME/SNA, INFORM, PRISAM, PRIMAN, PRIMELINK,
PRIMIX, PRIMEWORD, PRIMENET, PRIMEWAY, PRODUCER, PRIME TIMER,
RINGNET, SIMPLE, Prime INFORMATION/pc, PT25, PT45, PT65, PT200, PT250,
and PST 100 are trademarks of Prime Computer, Inc.

Printing History

First Edition (DOC10082-1LA) August 1986 for Revision 20.2
Update 1 (UPD10082-11A) July 1987 for Revision 21.0
Update 2 (UPD10082-12A) August 1988 for Revision 22.0
Update 3 (in RLN10247-1LA) July 1989 for Revision 22.1
Second Edition (DOC10082-2LA) June 1990 for Revision 23.0

Credits

Editorial: Barbara Bailey, Sonya Zegarra
Index Development: Mary Skousgaard
Hllustration: Elizabeth Wahle

Technical Support: Julie Cyphers
Production: Judy Gordon

J

=

J

3

3

How to Order Technical Documents
To order copies of documents, or to obtain a catalog and price list
e United States customers call Prime Telemarketing, toll free, at
1-800-343-2533

Monday through Thursday, 8:30 a.m. to 8:00 p.m., and
Friday, 8:30 a.m. to 6:00 p.m. (EST).

¢ International customers contact your local Prime subsidiary
or distributor

PRIME SERVICEs¥
To obtain service for Prime systems
e United States customers call Prime Customer Support Center, toll free, at

1-800-800-PRIME

¢ International customers contact your Prime representative.

Surveys and Correspondence

Please comment on this manual using the Reader Response Form provided in the back of
this book. Address any additional comments on this or other Prime documents to

Technical Publications Department
Prime Computer, Inc.

500 Old Connecticut Path
Framingham, MA 01701

fif

Reading Path for PRIMOS Documentation
Book Level
PRIMOS Introduction
dsers for all Users
\ 4
SPL' EEIMOSG
Jeers - Commands Reference
Guide for all Users
y 4
\ 4
Subroutines Language
il | Roterence Reference for
< Programmers
y
| - >
\
fou;lce fg(AEDand (F;r rammer's)
oV uide to rogrammer
Deb
Degrgeer it Epe Tools
Guide
Y
y ¥ v ,
Advanced Advanced Advanced Advanced
Programmer’s Programmer’s Programmer's Pro‘grammer's
Guide 1 Guide Il Guide It Guide:
BIND and Command File System Appendices
EPFs Environment and Master
Index
Advanced
v Programmer
Y Information
System Instruction Assembly
Architecture Sets Gude Language
Reference Programmer's
Guide Glf:ge
4
Qpath D10082.2LA

iv

))

J

Contents

About This Book

Overview of Subroutines

Functions and Subroutines . .. 1-1
Subroutine Descriptions . . . 1-2
Subroutine Usage . .. 14
Subroutine Parameters. . . 1-6

Core Operating System Services

System Information Routines . . . 2-2
ABSSWS...2-3

CKDYNS§...24

CL$MSG ... 2-5

CPUIDS...2-7

DATES ... 2-11
DS$SEND_CUSTOMER_UM...2-12
ERSTEXT...2-15
GINFO...2-17

GSNAMS . ..2-19
LOVSSW...2-20
PRISRV...2-22
RSEGACS...2-23

SNCHKS . ..2-25

USERS...2-26

User Information Routines . . . 2-27
ASSURS . ..2-28

CHGS$PW . ..2-29
COMSAB...2-31

GENSPW . ..2-32

vi

IDCHKS . ..2-33
INSLO...2-34
LOGOSS...2-35
LUDEVS...2-37
PRIIDS . ..2-40
PTIMES . ..2-41

PWCHKS . ..2-42
READYS...2-43

SID$GT...2-44
SUSRS...2-45
TISMSG ... 2-46

TIMDAT . .. 2-47

TMRSGINF .. .2-49

TMRS$GTIM. .. 2-51
TMRS$LOCALCONVERT . .. 2-52
TMR$UNIVCONVERT . .. 2-54

UNOS$GT ... 2-56
UTYPES...2-57
VALIDS . ..2-59

System Status and Metering Routines . . . 2-60
DS$SAVL...2-61

DS$ENV ...2-63

DS$UNI. . . 2-67

GSMETR...2-72

User Terminal I/0

Command Input Files . . . 3-2
Phantom Input and Output . . . 3-3
Assigned Lines. .. 3-3
Single-character Arguments . .. 3-3
User Terminal Input Routines . . . 34
CI1IN...3-5

C1INS...3-6
CINES...3-7
CLSGET...3-8
CNINS...3-11

COMANL...3-13
ECL$CC...3-14

J

ECLSCL...3-17

RDTKSS . ..3-22

T1IB...3-28

TI1IN...3-29

TIDEC...3-30

TIHEX...3-31

TIOCT ...3-32

User Terminal Output Routines . . . 3-33
ERS$PRINT . .. 3-34

I0AS$...3-36
IOASER...3-43
TNOU...3-45
TNOUA ...3-46
TODEC... 347
TOHEX ...3-48
TONL...3-49
TOOCT ... 3-50
TOVFDS...3-51
TIOB...3-52
T10U...3-53

User Terminal Control Routines . . . 3-54
BREAKS...3-55
COS$GET...3-56
COMISS . .. 3-57
COMOSS . .. 3-58
DUPLXS$...3-60
ERKLS$S...3-63
QUITS...3-65
TTYSIN...3-66
TTYSOUT...3-67
TTYS$RS...3-68

Memory Allocation

General-purpose Allocate and Free Routines . . .

ALOCSS ...4-3
MMSMLPA ...4-5
MMSMLPU...4-6
STRSAL . ..4-7

vii

viii

STR$AP...4-8
STRSAS ...4-9
STR$AU...4-10
STRSFP...4-11
STR$FR...4-12
STRS$FS . ..4-13

STR$FU...4-14

Command Function Returned Data Routines . .

ALCSRA ... 4-16

ALSSRA ...4-21

FRESRA ...4-22
Informational Routines . . . 4-23
DY$SGS...4-24

ST$SGS .. .4-25

TL$SGS ...4-26

Program Control

Recursive Command Environment . . . 5-1

Phantom Processes and Logout Notification . . .

Command-level Control Routines . . . 54

CMLVSE...5-5
COMLVS...5-6
EXIT...5-7
ICES$...5-8
KLMSIF...5-10
SETRCS ... 5-14

SS$ERR . ..5-16

.4-15

Static-mode Save and Restore Routines . . . 5-17

RESTSS . ..5-18
RESUS$$...5-20
SAVESS . ..5-21

Phantom Process Control Routines . . . 5-23
LONSCN ...5-24

LONSR ...5-25

PHNTMS. .. 5-27

J

)

3

)

6 conversion Routines and Other Utilities

Numeric Conversion Routines . . . 6-2

CH$FX1...6-3
CHS$FX2...6-5
CH$HX2...6-7
CH$OC2...6-9

Date Conversion Routines . . . 6-11
CVEDQS...6-12
CVSDTB...6-13

CVS$FDA ...6-15
CVSFDV...6-17
CV$QSD...6-19

Other Routines . . . 6-20

BIN$SR ... 6-21
ENCRYPTS...6-23
GCHAR...6-24
GT$PAR ... 6-25
IOASRS . ..6-30

MOVEWS ... 6-32
NAMEQS .. .6-33
SCHAR...6-35
UID$BT...6-37
UID$CH ... 6-38

7/ Condition Mechanism

Creating and Using On-units . . . 7-2
Examples of Programs . .. 7-7
Additional Program Examples . .. 7-10
Crawlout Mechanism . . . 7-18
Condition Mechanism Routines . . . 7-19
CNSIGS ... 7-20

MKLBS$F...7-21

MKONSF . ..7-22
MKONSP...7-24
MKONUS...7-26

PLISNL...7-28

RVONSF...7-29

RVONUS...7-30

SGNLS$F...7-31

SIGNL$...7-33

Exit Condition Control Routines . . . 7-35
EXS$CLR...7-36

EX$RD...7-37

EXS$SET...7-38

Data Structure Formats . . . 7-39

8 Semaphores and Timers

Realtime and Interuser Communication Facilities . . .

Semaphores . . . 8-1

Prime Semaphores . .. 8-6
Coding Considerations . . . 8-8
Pitfalls and How to Avoid Them . . . 8-9
Locks...8-12

Semaphore Routines . . . 8-15
SEMSCL...8-16
SEMS$DR... 8-17
SEMSNEF...8-18

SEMSOP, SEMOU . . . 8-20
SEMS$TN...8-24
SEMSTS...8-26

SEMS$TW ...8-27

SEM$WT ...8-28

Limit Timer Routine . . . 8-29

LIMITS. .. 8-30
Process Delay Routines . . . 8-33
SLEEPS. .. 8-34
SLEPS$I...8-35

Message Facility

Message Facility Routines . . . 9-1

MSGS$ST...9-2
MGSETS ...94
RMSGDS$... 9-6
SMSGS$...9-8

8-1

J)

)

Appendices
A Standard Conditions
B Dpata Type Equivalents
C File-system Date Format

D Superseded Routines
DISPLY...D-2

ERRPRS ... D-3
ERRSET...D-5
ERTXTS$...D-7

GETERR...D-8
OVERFL...D-9
PHANTS ... D-10

PRERR...D-11
RECYCL...D-14
SLITE...D-15
SLITET...D-16

SSWTCH...D-17
TEXTOS ...D-18
UPDATE...D-20

Indexes

Index of Subroutines by Function

Access Category . . . FX-2
Access Server Names . . . FX-2
Arrays ... FX-3

Asynchronous Lines . . , FX-3
Attach Points . . . FX-3

Binary Search . ..FX—+4

Buffer Output . . . FX-4
Command Environment . . . FX—4
Command Level . . . FX-5
Condition Mechanism . . . FX-5

Controllers, Asynchronous, Multi-line . .

.FX-6

Xi

Xif

Data Conversion . . . FX-6

Date Formats . . . FX—-6

Devices, Assigning or Attaching . .. FX-7
Disk I/O . ..FX-7

Drivers, Device-independent . . . FX-7
Encryption, of Login Password . . . FX-7
EPFs...FX-8

Error Handling, I/O . . . FX-9

Event Synchronizers and Event Groups . . . FX-9

Executable Images . . . FX-11
EXITS$ Condition . . . FX-11
File System Objects . . . FX-11
ISC...FX-14

Keyboard or ASR Reader . . . FX-15
Logging . ..FX-15

Matrix Operations . . . FX-15
Memory ... FX-16

Message Facility . . . FX-17
Numeric Conversions . . . FX-17
Paper Tape . . . FX-17

Parsing . . . FX-18

Peripheral Devices . . . FX-18
Phantom Processes . . . FX-19
Process Suspension . . . FX-20
Query User. .. FX-20
Randomizing . . . FX-20

Search Rules . . . FX-20
Semaphores . . . FX-21

Sorting . . . FX-22

Strings . . . FX-23

System Administration . . . FX-24
System Information . . . FX-25
Timers . . . FX-26

User Information . . . FX-27
User Terminal . . . FX-28

Index of Subroutines by Name

Index

))

J

A

About This Book

The Subroutines Reference series describes the standard Prime® subroutines and
subroutine libraries. Each standard subroutine library is a file containing
subroutines that perform a variety of related programming tasks. Whenever
these tasks are to be performed, programmers can call the appropriate
subroutines in the standard libraries instead of writing their own subroutines.
Programmers need to write subroutines only to perform specialized tasks for
which no standard subroutines exist.

Overview of This Series

The Subroutines Reference consists of five volumes. A brief summary of the
contents of each volume follows.

Volume I: Using Subroutines

Volume I introduces the Subroutines Reference series. It describes the nature and
functions of the Prime standard subroutines and subroutine libraries. It explains
how subroutines can be called from programs written in the Prime programming
languages: C, COBOL 74, FORTRAN IV, FORTRAN 77, Pascal, PL/I, BASIC
V/M, and PMA.

Volume II: File System

Volume II describes subroutines that deal with the access to and management of
file system entities, the manipulation of EPFs in the execution environment,
system search rules, and the use of a number of command environment
functions.

Volume IlI: Operating System

Volume III describes system subroutines. The subroutines covered in this
volume are general system calls to the operating system and the standard system

Second Edition xiii

Subroutines Reference Ili: Operating System

Xiv

Second Edition

library. These include subroutines for system and user IDs and status, along with
the System Information and Metering (SIM) routines. This volume also includes
calls for terminal I/0, memory allocation, and program control. Data conversion
routines, error message and condition handling routines, semaphores, and an
interuser message facility are all found in this volume. An appendix to Volume
III lists PRIMOS standard conditions.

Volume 1V: Libraries and I/O

Volume IV presents several mature libraries: the Input/Output Control System
(IOCS) library and other I/O-related subroutines, the Application library, the Sort
libraries, the FORTRAN Matrix library (MATHLB), and the CONFIG_USERS
library.

IOCS provides device-independent 1/0. The chapters on IOCS provide
descriptions of the device-independent subroutines plus those device-dependent
subroutines simplified by IOCS. Another section provides descriptions of the
synchronous and asynchronous device-driver subroutines.

Sections on the Application library, the Sort libraries, and the FORTRAN Matrix
library provide descriptions of other program development subroutines
especially useful for FORTRAN programs.

The section on CONFIG_USERS describes the subroutines available to the
System Administrator who wants to create tailor-made administration programs.
CONFIG_USERS replaced EDIT_PROFILE at Rev. 22.1.

Volume V: Event Synchronization

Volume V describes event synchronization and two facilities that use event
synchronization: the Timers facility and the InterServer Communications (ISC)
facility.

¢ Event synchronization is made possible by event synchronizers. This
volume documents subroutines with which users can create, destroy, and
post and receive notices on their event synchronizers. It also describes
subroutines that associate several event synchronizers into an event group.

e The Timers facility makes time-dependent process synchronization
possible. This volume describes subroutines with which users can create,
destroy, set and reset timers that post notices on event synchronizers at a
specified time or interval.

e The ISC facility makes it possible for processes that are running
concurrently to exchange messages. This volume describes subroutines for
establishing a message session and sending and receiving messages
between two processes. These processes may be running on the same

J

J

J

)

About This Book

system or on two different systems connected by PRIMENET ™, Message
exchange is coordinated by using event synchronizers.

Specifics of This Volume

This volume of the Subroutines Reference series presents detailed descriptions of
system subroutines.

Chapter 2 describes subroutines for general operating system information,
metering information, and information specific to the current user. This chapter
includes several additions for Rev. 23.0, including a new subroutine,
DS$SEND_CUSTOMER_UM, for sending messages to the DSM server, and
extensive additions to the GSMETR subroutine.

Chapter 3 describes subroutines that perform input and output on the user’s main
terminal, as well as procedures for controlling terminal interaction. Subroutines
Reference IV: Libraries and 1/0 describes routines for other types of input and
output.

Chapter 4 describes subroutines that enable allocation and freeing of blocks of
contiguous memory. It also contains specific routines related to the use of EPF
functions, and procedures that tell how much memory is available. Subroutines
Reference II: File System describes the other routines used for manipulating
EPFs.

Chapter S contains subroutines that control the user’s command environment and
terminate programs. Routines for serialization and for controlling static-mode
programs and phantom processes also are described in this chapter.

Chapter 6 contains subroutines that convert data from one form to another and
that manipulate data. It includes descriptions of subroutines that perform binary
searches, encrypt passwords, and store and retrieve characters in arrays.

Chapter 7 describes subroutines that implement the condition mechanism.

Chapter 8 describes subroutines that manipulate semaphores, signal the
completion of a timed interval, and cause a specific delay before processing is
resumed. Subroutines Reference V: Event Synchronization describes another,
independent facility for posting and receiving notices and signalling timed
intervals.

Chapter 9 describes subroutines used to implement the PRIMOS® message
facility for exchanging messages between users. Subroutines Reference V: Event
Synchronization describes another, independent facility for message exchange.

The appendices provide a complete listing of PRIMOS standard conditions, a
chart of data type equivalents for different languages, an explanation of the
Prime file-system date format, and reference material for subroutines that are
obsolete or superseded, but still supported.

Second Edition xv

Subroutines Reference Ill: Operating System

Three indexes enable the reader to find information quickly. These are

¢ The Index of Subroutines by Function, a list of all subroutines in the
five-volume series, grouped by the general types of function that they
perform. Use this index to find out which subroutines perform a particular
function, then use the Index of Subroutines by Name to locate the desired
subroutine.

¢ The Index of Subroutines by Name, an alphabetical list of all subroutines
in the five-volume series. It lists the volume, chapter, and page number of
the reference material for each subroutine.

¢ The Index, alist of the topics treated in this volume. Use this index to find
out where in this volume a particular topic, process, or term is described.

Suggested References

xvi

Second Edition

The other volumes of the Subroutines Reference document set are the following:

o Subroutines Reference I: Using Subroutines (DOC10080-2LA) and its
update for Rev. 23.0 (UPD10080-21A)

o Subroutines Reference II: File System (DOC10081-2LA)
® Subroutines Reference IV: Libraries and I'O (DOC10083-2LA)

o Subroutines Reference V: Event Synchronization (DOC10213-1LA) and its
update for Rev. 23.0 (UPD10213-11A)

The five volumes of the Subroutines Reference and their current updates can be
ordered as a set as DCP10159.

The PRIMOS User’s Guide (DOC4130-5LA) contains information on system
use, directory structure, the condition mechanism, CPL files, ACLs, global
variables, and how to load and cxecute files with external subroutines. New
information for Rev. 23.0 can be found in the PRIMOS User’s Release Document
(DOC10316-1PA).

Also available for Rev. 23.0 is the Rev. 23.0 Software Release Document
(DOC10001-7PA). This contains information primarily of intercst to System
Administrators and operators.

The Programmer’s Guide to BIND and EPFs (DOC8691-1LA) and its updates
for Rev. 22.0 (UPD8691-11A) and Rev. 23.0 (UPD8691-12A) show application
programmers how to use the executable program format environment.

))

J) I

3

About This Book

The Advanced Programmer’s Guide, the companion to the Subroutines
Reference series, consists of four volumes:

Advanced Programmer’s Guide I: BIND and EPFs (DOC10055-2LA)
Advanced Programmer’s Guide I1: File System (DOC10056-3LA)

Advanced Programmer’s Guide IlI: Command Environment
(DOC10057-2LA)

Advanced Programmer’s Guide: Appendices and Master Index
(DOC10066-4LA)

These volumes provide strategies for the use of subroutines by system
programmers and application programmers. They provide the most complete
information on the use of EPFs, of file system subroutines, and of command
environments. The Appendices and Master Index volume contains an annotated
listing of all PRIMOS standard error codes, as well as an index to the entire
Advanced Programmer’s Guide document set.

The following related Prime publications are also available.

Operator’s Guide to System Commands (DOC9304-5LA)

System Administrator’s Guide, Volume 1: System Configuration
(DOC10131-3LA)

System Administrator’s Guide, Volume II: Communication Lines and
Controllers (DOC10132-2LA), updated by RLN10132-21A.

System Administrator’s Guide, Volume 111: System Access and Security
(DOC10133-3LA)

System Architecture Reference Guide (DOC9473-2LA)

For a complete list of available Prime documentation, consult the Guide to Prime
User Documents.

Second Edition xvii

Subroutines Reference Ili: Operating System

Prime Documentation Conventions

Xviii

Second Edition

The following conventions are used throughout this document. The examples in
the table illustrate the uses of these conventions.

Convention

Uppercase

Italic

Abbreviations

Brackets

Braces

Braces within
brackets

Monospace

User input in
examples

Hyphen

Subscript

Parentheses

Explanation

In subroutine syntax or text, words
in uppercase indicate the names of
commands, options, statements, and
keywords. Enter them in either
uppercase or lowercase.

Variables in subroutine syntax, text,
or messages are indicated by lower-
case italic.

If a subroutine has an abbreviation,
the abbreviation is placed immedi-
ately below the full form.

Brackets enclose a list of one or
more optional items. Choose none,
one, or several of these items.

Braces enclose a list of items.
Choose one and only one of these
items.

Braces within brackets enclose a list
of items, Choose either none or only
one of these items; do not choose
more than one.

Identifies screen output, user input,
prompts, and messages.

In examples, user input is under-
scored but system prompts and out-
put are not.

Wherever a hyphen appears as the
first character of an option, it is a
required part of that option.

A subscript after a number indicates
that the number is not in base 10.
For example, the subscript 8 is used
for octal numbers.

In command or statcment formats,
you must enter parentheses exactly
as shown.

Example

DATES$

ASSURS (desired_time);

TMRSGTIM
TMRS$TM

~BRIEF
Lo [— SIZE]

filename
CLOSE {_ ALL

BIND [pat%mame}
options

address Connected

OK, RESUME MY PROG

SPOOL -LIST

2008

DIM array (row, col)

J)

J

)

Overview of Subroutines

A subroutine is a module of code that can be called from another module. It is
useful for performing operations that cannot be performed by the calling
language, or for performing standard operations faster. Users can write their own
subroutines to supply customized or repetitive operations. However, this manual
discusses only standard subroutines provided with the PRIMOS operating
system or in standard libraries.

This chapter summarizes the calling conventions for Prime subroutines and
explains the format of the subroutine descriptions in this volume. It assumes that
readers know a high-level language or PMA (Prime Macro Assembler), and that
they are familiar with the concept of external subroutines. For more information
on calling subroutines from Prime languages, see the chapter on your particular
language in Subroutines Reference I: Using Subroutines.

Functions and Subroutines

In this guide, a function is a call that returns a value. You call a function by
using it in an expression; the function’s returned value can then be assigned to a
variable or used in other operations within the expression. Here, the value
returned by DELESA is assigned to the variable valuel:

valuel = DELESA (argl, arg2);
A subroutine returns values only through its arguments. It is called this way:

CALL GVS$GET (argl, arg2, arg3, argd):

However, the word subroutine is also used as the collective term for both
modules.

Second Edition 1-1

Subroutines Reference Ili: Operating System

Subroutine Descriptions

1-2

Second Edition

In this guide, each description of a subroutine contains the following sections:

The name of the subroutine and, optionally, a six-character alias for use in
FTN programs. This is followed by a brief description of what the
subroutine does.

Usage. The format of the subroutine declaration and a subroutine call,
using PL/I language elements. For further information, see the section
Subroutine Usage below.

Parameters. Information about the arguments the subroutine expects and
the values it retumns. For further information, see the section Subroutine
Parameters later in this chapter.

Discussion. Additional information about the subroutine and examples of
its use.

Loading and Linking Information. Information about what libraries
must be loaded during the loading and linking process. For more
information, see Satisfying the References at Load Time later in this
chapter.

Figure 1-1 shows an example of a subroutine description.

J

“N\

J

Overview of Subroutines

READYS

Subroutines Reference il Operating System

READY$

READYS displays the PRIMOS command-Ievcl prompts

Usage

DCL RFADYS$ ENTRY (BIT(16), FIXED BIN);

CALL RFADYS (format, typecode);

Parameters

Jormat
INPUT Only the most sigmificant bit i used, the rest are reserved I the most
significant bit 1s 1, the bnef form of the prompt s displayed If the most
significant bit1s 0, the long form 1s displayed

typecode
INPUT Prompt type code 1f s valuc is greater than /cro, the crror prompt

s displayed 1f the valuc 1s less than /cro, the warming prompt is displayed Il
the value 1s zcro, the normal prompt is displayed

Discussion

Sce the PRIMOS User s Guide for a descniption of the command-level prompts
Note thai no newline follows the bnef forms of the prompts

Loading and Linking Information

V-modc and I-mode Mo speaial action
V-modc and I-mode with unshared librancs Load NPFTNLB
R mode Not available

2-40 Second Edition

10101.D10082 2LA

Figure 1-1. A Subroutine Description

Second Edition 1-3

Subroutines Reference Ill: Operating System

Subroutine Usage

1-4 Second Edition

The Usage section of each subroutine description includes two items of
information:

¢ How to declare the subroutine in a program

e How to invoke it in a program

The notation used is that of the PL/I language. If you do not know PL/I, the
explanation of the relevant PL/I syntax and data types in this section and the
Subroutine Parameters section should enable you to call these subroutines from
other languages.

Subroutine Declarations

The following example shows a subroutine declaration:
DCL CNIN$ ENTRY (CHARACTER(*), FIXED BIN, FIXED BIN);

DCL is the short form of DECLARE. The DECLARE statement is used to
declare all data types, including those involved in subroutines and functions.
CNINS is the subroutine name. ENTRY specifies that the item being declared is
an entrypoint in a subprogram external to the program from which it is called.

The items in parentheses are the parameters of the subroutine. The parameters
indicate the data types required for each argument of the subroutine.

Subroutine Calls

The following example shows a call to the subroutine declared above:
CALL CNINS (buffer, char_count, actual_count);

PL/I does not distinguish between uppercase and lowercase characters. In the
Usage section of a subroutine description, lowercase letters indicate the items
that must be supplied by the user, both arguments (actual parameters, rather than
formal parameters) and data items. These are described more fully in the
Parameters section. Uppercase letters indicate items that must be copied
verbatim.

The CALL statement above invokes the subroutine CNIN$. The arguments in
parentheses correspond to the parameters in the subroutine declaration. The
variables or constants used as arguments in a call to the subroutine must match
the data types of the parameters in the declaration. Here, the variable buffer
must be a character string, while char_count and actual count must be integers.

J

“N

J

'1’

3

Note

Overview of Subroutines

A subroutine that has no parameters is invoked simply by giving the CALL
keyword and the name of the subroutine:

CALL TONL;

Function Declarations

The following example shows a function declaration:

DCL PWCHKS$ ENTRY (FIXED BIN, CHAR(*) VAR)
RETURNS (BIT (1))

The only difference between a function declaration and a subroutine declaration
is at the end of the DECLARE statement. The function declaration contains the
keyword RETURNS, followed by a returns descriptor specifying the data type
of the value returned by the function. In this case, it is a logical or Boolean value
— one that equates to TRUE or FALSE.

Function Calls

A function is invoked when its name is used as an expression on the right side of
an assignment statement. The following example shows an invocation of the
function declared above:

password ok = PWCHK$ (key, password) ;
The equal sign = is the assignment operator. password_ok is a logical (Boolean)

variable that is assigned the value returned by the call to PWCHKS. key and
password represent integer and character string values, respectively.

Functions Without Parameters

A function that takes no parameters is invoked with an empty argument list. The
DATES subroutine is declared as follows:

DCL DATES ENTRY RETURNS (FIXED BIN(31)):
Its invocation looks like this:

date_word = DATES ();

Functions called from FTN programs require parameters.

Second Edition 1-5

Subroutines Reference Ill: Operating System

Subroutine Parameters

1-6

Second Edition

Subroutines usually expect one or more arguments from the calling program.
These arguments must be of the data type specified in the parameter list of the
DECLARE statement, and must be passed in the order expected. All standard
Prime subroutines are written in FORTRAN, PMA, or a system version of PL/I.
Subroutines Reference 1: Using Subroutines discusses how to translate the data
types expected by these languages into other Prime languages. A chart
summarizing data type equivalents for all Prime languages is in Appendix B of
this volume.

You must provide the number of arguments expected by the subroutine. If too
few arguments are passed, execution causes an error message such as POINTER
FAULT or ILLEGAL SEGNO. If too many arguments are passed, the subroutine
ignores the extra arguments, but will probably perform incorrectly. A small
number of subroutines, such as IOAS$, accept varying numbers of arguments.

The Usage section of a subroutine description gives the data types of the
parameters. The Parameters section explains what information these parameters
contain and what they are used for. Each parameter description in this section
begins with a word in uppercase that indicates whether the parameter is used for
input or output:

e INPUT means that the parameter is used only for input, and that its value is
not changed by the subroutine.

e OPTIONAL INPUT refers to an input parameter that may be omitted. See
the section Optional Parameters later in this chapter.

¢ OUTPUT means that the parameter is used only for output. You do not
have to initialize it before you call the subroutine.

e OPTIONAL OUTPUT refers to an output parameter that may be omitted.
See the section Optional Parameters later in this chapter.

¢ INPUT/OUTPUT means that the parameter is used for both input and
output. The argument you pass to it may be changed by the subroutine.

e INPUT —> OUTPUT refers to a situation in which

1. The parameter, an input parameter, is a pointer.

2. The data item to which the pointer points is not a parameter of the
subroutine, but it is changed by the subroutine.

¢ RETURNED VALUE is the value returned by a function. (It is not, strictly
speaking, a parameter.)

e OPTIONAL RETURNED VALUE is the value returned by a subroutine
that can be called either as a function or as a procedure. See the section
Optional Returned Values later in this chapter.

J

J

D

Overview of Subroutines

Parameter and Returned-value Data Types

A PL/I parameter specification consists simply of a list of the data types of the
parameters. The data types you will encounter, both in the parameter list and in
the RETURNS part of a function declaration, are the following:

CHAR(n)

CHAR(*)

CHAR(n) VAR

CHAR(*) VAR

FIXED BIN

FIXED BIN(31)
(n) FIXED BIN

FLOAT BIN

FLOAT BIN(47)

BIT(1)

Also specified as CHARACTER(n),
CHARACTER(n) NONVARYING. Specifies a
character string or array of length n. A CHAR(n)
string is stored as a byte-aligned string, one
character per byte. (A byte is 8 bits.)

Also CHARACTER(*), CHARACTER(*)
NONVARYING. Specifies a character string or
array whose length is unknown at the time of
declaration. A CHAR(¥) string is stored as a
byte-aligned string, one character per byte.

Also CHARACTER(n) VARYING. Specifies a
character string or array whose length can be a
maximum of n characters. The first two bytes (one
halfword) of storage for a CHAR(n) VAR string
contain an integer that specifies the string length;
these are followed by the string, one character per
byte.

Also CHARACTER(*) VARYING. Specifies a
character string or array whose length is unknown at
the time of declaration. The first two bytes (one
halfword) of storage for a CHAR(*) VAR string
contain an integer that specifies the string length;
these are followed by the string, one character per
byte.

Also FIXED BINARY, BIN, FIXED BIN(15).
Specifies a 16-bit (halfword) signed integer.
Specifies a 32-bit signed integer.

An integer array of n elements. See below for more
information about arrays.

Also FLOAT BIN(23), FLOAT. Specifies a 32-bit
(one-word) floating-point number.

Specifies a 64-bit (double-word) floating-point
number.

Specifics a bit string of length n. BIT(n) ALIGNED
means that the bit string is to be aligned on a
halfword boundary.

Second Edition 1-7

Subroutines Reference lll: Operating System

Note

1-8 Second Edition

POINTER Also PTR. Specifies a POINTER data type. A
pointer is usually stored in three halfwords (48 bits).
If the pointer only points to halfword-aligned data, it
may occupy two halfwords (32 bits). The item to
which the pointer points is declared with the
BASED attribute (for instance, BASED FIXED
BIN).

POINTER OPTIONS (SHORT)
Same as POINTER except that it always occupies
only two halfwords and can only point to
halfword-aligned data.

When used as a parameter, POINTER can generally be used interchangeably with
POINTER OPTIONS (SHORT).

When used as a returned function value, POINTER OPTIONS (SHORT) can be used in
any high-level language except Pascal or 64V mode C, which require returned pointers to
be three halfwords; in these cases, POINTER must be used. C in 32IX mode accepts only
halfword-aligned, two-halfword pointers, and therefore requires the use of POINTER
OPTIONS (SHORT).

Sometimes an argument is defined as an array or a structure. An array
declaration looks like this:

DCL ITEMS(10) FIXED BIN;

Here, ITEMS is a 10-element array of integers. The keywords FIXED BIN,
however, can be replaced by any data type. In PL/I, by default, arrays are
indexed starting with the subscript 1; the first integer in this array is ITEMS(1).

An array with a starting subscript other than 1 is declared with a range
specification:

DCL WORD(0:1023) BASED FIXED BIN;

WORD is an array indexed from 0 to 1023, and its elements are referenced by
POINTER variables.

A structure is equivalent to a record in COBOL or Pascal. A structure
declaration looks like this:

DCL 1 fs_date,
2 year BIT(7),
2 month BIT(4),
2 day BIT(5),
2 quadseconds FIXED BIN(15);

«
ﬂ

J

3

Overview of Subroutines

The numbers 1 and 2 indicate the relative level numbers of the items in the
structure. The name of the structure itself is always declared at level 1. The
level number is followed by the name of the data item and its data type. In this
example, the structure occupies a total of 32 bits. (Remember that a FIXED
BIN(15) value occupies 16 bits of storage.)

Since no names are given to data items in parameter lists, the array declared
above as ITEMS would be declared simply as (10) FIXED BIN. Similarly, the
structure fs_date would be listed as

(..., 1, 2 BIT(7), 2 BIT(4), 2 BIT(5), 2 FIXED BIN(15),
o)

Optional Parameters

On Prime computers, some subroutines and functions are designed so that one or
more of their parameters, input or output, can be omitted. Candidates for
omission are always the last n parameters. Thus, if a subroutine has a full
complement of three parameters, it may be designed so that the last one or the
last two can be omitted; the subroutine cannot be designed so that only the
second parameter can be omitted. The first parameter can never be omitted.

In the Usage section of a subroutine description, any optional parameters are
enclosed in square brackets, as in the following declaration and CALL statement:

DCL CHSFX1 ENTRY (CHAR(*) VAR, FIXED BIN(15)
[, FIXED BIN(15)1]);

CALL CHSFX1 (string to_convert, result
[, nonstandard codel);

In some cases, parameters can be omitted because they are not needed under the
circumstances of the particular call. In other cases, when the parameter is of the
type INPUT, the subroutine will detect the missing parameter and will assume
some value for it. For example, C1IN$, described in this volume, can be called
with one, two, or three arguments:

CALL ClINS$ (char);
CALL C1IN$ (char, echo_flag):

CALL ClIN$ (char, echo flag, term flag);

If echo_flag is missing, the subroutine acts as if it had been supplied with a value
of TRUE. If term_flag is missing, the subroutine acts as if it had been supplied
with a value of FALSE.

Second Edition 1-9

Subroutines Reference Ill: Operating System

Note

1-10 Second Edition

In still other cases, the subroutine changes its behavior depending on the
presence of the parameter. For example, the subroutine CH$FX 1 (described in
this volume) uses its third argument to return an error code. If the code argument
is omitted and an error occurs, the routine signals a condition instead.

If a parameter can be omitted, it is described as OPTIONAL INPUT or
OPTIONAL OUTPUT in the routine description. Most of the routines in the
Subroutines Reference have no optional parameters.

Optional Returned Values

In the architecture of Prime computers, a subroutine that is designed as a
function can be called as a subroutine using the CALL statement. Frequently
this makes no sense. The statement

CALL SIN (45);

does nothing useful; the value that the SIN function returns is lost. But, with
functions that change some of their parameters as well as return a value, the
returned value can be useful in some contexts and not of interest in other
contexts. Consider the function CL$GET, described in this volume. It reads a
line from the command device and, in addition, returns a flag that indicates
whether a command input file is active. Most programs do not need to know
whether a command input file is active. They call CL$GET as a subroutine:

CALL CL$GET (BUFFER, 80, CODE);

A program interested in command input files, however, calls CL$GET as a
function:

comisw = CLSGET (buffer, 80, code):

In PL/I and Pascal, a given subroutine cannot be used both as a subroutine and as a
function within a single source module.

The Usage section of the subroutine descriptions gives both the function
invocation and the subroutine invocation for subroutines that are likely to be
called in both ways.

In the Parameters section, a routine that is designed as a function has its returned
value described as RETURNED VALUE if it is considered the main purpose of
the subroutine to rcturn the valuc. If the function is likely to be called as a
subroutine — that is, if returning the value is considered to be something that is
needed only on some occasions — the returned value is described as
OPTIONAL RETURNED VALUE.

J

D

)

Overview of Subroutines

How to Set Bits in Arguments

Sometimes a subroutine expects an argument that consists of a number of bits
that must be set on or off.

A data item is stored in a computer as a collection of bits, which can each have
one of two values, off or on. On Prime computers, off is arbitrarily equated to the
bit value "0’B or false, and on is equated to '1'B or true. (This is not the same as
the FORTRAN values .FALSE. and .TRUE., which are the LOGICAL data types
and are really integers.) When bits are stored as part of a group, however, the
position of the bit gives it a numeric value as well as the bit value "1’B or *0’B.
Its position equates it to a power of 2. Consider an argument that contains only
two bits, represented in Figure 1-2.

Bit 1 Bit 2

2**1 2**0 10102D100822LA

Figure 1-2. Values of Bit Positions — Two Bits

The low-order bit is in the position of 2 to the 0 power, and its value, if the bit is
on, is 1. The high-order bit is in the position of 2 to the first power, and its
value, if the bit is on, is 2. (If the bit is off, its value is always 0.) By
convention, the low-order bit is called the rightmost bit and the high-order bit is
called the leftmost bit.

In an argument containing 16 bits, choose the bits that you want to set on,
compute their value by position, and add these values. The resulting decimal
value is what you should assign to the subroutine argument for the options you
want. You can pass an integer as an argument that is declared as BIT(#n)
ALIGNED. The subroutine interprets the integer as a bit string. For example, if
you want to set the sixtcenth and the seventh bits, compute 2 to the O power plus
2 10 the ninth power, which amounts to 1 plus 512, or 513. Figure 1-3 illustrates
values of bit positions in a 16-bit argument.

Bit 1 Bit 7 Bit 16

2"*15 2*"9 20

101.03.D10082 2LA

Figure 1-3. Values of Bits in a 16-bit Argument

Second Edition 1-11

Subroutines Reference Ill: Operating System

1-12 Second Edition

Key Names as Arguments

In calls to many subroutines, data names known as keys can be used to represent
numeric arguments. The subroutine description explains which key to use.
Numeric values are associated with these keys in the SYSCOM directory.

Keys are of the form x$yyyy, where x is either K or A and yyyy is any
combination of letters. Keys that begin with K concemn the file system; those
that begin with A concern applications library routines.

Examples are

K$CURR
ASDEC

For example, in the subroutine call
CALL GPATHS (KS$SUNIT..... other arguments...):

the key K$UNIT stands for a numeric constant value expected by the subroutine.
If a subroutine expects key arguments, the description of that subroutine explains
which keys to use in which circumstances.

Each language has its own files of keys. The chapters on individual languages in
Subroutines Reference I: Using Subroutines explain how to insert these files into
your program. Key files have the pathnames

SYSCOM>KEYS.INS.language
for K$yyyy keys, and
SYSCOM>ASKEYS.INS.language

for A$yyyy keys, where language is the suffix for that language.

For more information about keys, see Subroutines Reference I: Using
Subroutines.

Standard Error Codes

Many subroutines include as an argument a standard error code, which is similar
to a key. The error code corresponds to an error message that the subroutine can
return to indicate that the call to the subroutine succeeded or failed, or to report
some other condition worth noting.

J

J

Overview of Subroutines

Standard error codes are of the form E$xxxx, where xxxx is any combination of
letters. For example, the error code

E$DVIU

corresponds to the error message The device is in use.

The standard error codes are defined in the SYSCOM directory. Like a key file,
the error code file for a particular language must be inserted in the program that
calls the subroutine. Each error code file has the pathname

SYSCOM>ERRD. INS. language

where language is the suffix for that language. For explanations of the standard
error codes, see the Advanced Programmer’s Guide: Appendices and Master
Index, which contains an annotated listing of the standard error codes and the
messages to which they correspond.

Libraries and Addressing Modes

The Subroutines Reference document set is organized to give a systematic
description of subroutine libraries — sets of routines, all broadly dealing with
the same subject, are grouped together. There is a separate library for each of
these subjects.

Prime computers offer several addressing modes to provide software
compatibility to the user. (For a discussion of addressing modes, see the System
Architecture Reference Guide.) To maintain this compatibility, a given
subroutine library normally exists in three general versions: R-mode, V-mode,
and V-mode (unshared). (See Chapter 1 of Subroutines Reference I: Using
Subroutines for a discussion of shared and unshared libraries.)

A program is compiled in one of the segmented modes (V-mode or I-mode) or in
the older R-mode. If the program is compiled in one of the segmented modes, it
may call library routines written in any of the segmented modes. A single set of
libraries is provided for all three modes. If the program is compiled in either
V-mode or I-mode, it requires the suitable version of the library (normally a
V-mode library services both V-mode and I-mode programs). If the program is
compiled in R-mode, the program must use the R-mode version of that library.

Every routine description contains a section entitled Loading and Linking
Information, which describes how to access the routine from the different modes.

Second Edition 1-13

Subroutines Reference Ill: Operating System

1—14 Second Edition

Satisfying the References at Load Time

When the subroutines in this volume are called by a program, the references
must be satisfied when the compiled binaries are linked with BIND, SEG, or
LOAD (the R-mode loader).

This is accomplished by loading a binary library supplied by Prime using the LI
(for Library) command. The Loading and Linking Information section under
each routine description provides the information for up to three loading choices:

¢ V-mode or I-mode, with shared code. This is the preferred method, as it
allows many users of a system to share the same copy of code.

e V-mode or I-mode with unshared code.

e R-mode.

For all the routines described in this volume, only the V-mode or I-mode
subroutines with unshared code require a special library. Both the shared code
and R-mode code require no special action. This means that the LI{brary]
command with no arguments, which normally ends a loading sequence, satisfies
the references.

Getting the Subroutines at Runtime

When a subroutine is available to be shared among users, PRIMOS postpones
finding the code until runtime. (Other subroutines have their code so linked with
the program that they are called unshared routines.) The program linked to
shared subroutine code retains only the name of the subroutine, and at runtime
PRIMOS replaces the name with the actual location of the shared code, thus
completing the connection. For the connection to happen, the code must be in
one of three places: in PRIMOS itself, in an executable program format (EPF)
library, or in a static-mode library. Furthermore, the user’s ENTRY$ search list
must contain a pathname to the library that holds the code, unless the subroutine
is located in PRIMOS.

If the Loading and Linking Information section indicates no special action for
loading a subroutine library, then the code for this subroutine is either in
PRIMOS itself or in one of the two EPF librarics supplied by Prime,
SYSTEM_LIBRARY.RUN or PRIMOS_LIBRARY.RUN. The pathnames to
these libraries must be in the system search rules.

Because many of the subroutines herein are providing PRIMOS services, there is
no way of providing them as unsharcd code, since PRIMOS by definition is
shared.

For a further description of libraries and related terminology, see Subroutines
Reference I: Using Subroutines.

))

J

)

3

Core Operating System Services

This chapter describes subroutines that provide core operating system services to
the programmer.

The first part of this chapter presents subroutines involving general operating
system information. This part includes the subroutine
DS$SEND_CUSTOMER_UM, new at Rev. 23.0, that allows you to send
messages to the DSM server.

The second part of this chapter describes subroutines involving system
information specific to the current user.

The third part of this chapter describes system status and metering subroutines.
The subroutines whose names begin with DS$ are intended to support System
Information and Metering (SIM) commands. They are being made available to
programmers because they provide potentially useful information. Similarly, the
routine GSMETR is provided to support the USAGE command, but may be of
more general use.

Second Edition 2-1

Subroutines Reference lil: Operating System

System Information Routines

2-2

Second Edition

This section describes the following subroutines:

Routine
ABSSWS

CKDYN$

CL$MSG

CPUID$

DATE$
DS$SEND_CUSTOMER_UM
ER$TEXT

GINFO
GSNAMS
LOV$SW
PRI$RV
RSEGACS$
SNCHKS$
USER$

Function

Return cold-start setting of ABBREV
switch.,

Determine if routine is dynamically
accessible.

Return text of a specified system prompt.
Return model number of Prime computer.
Return current date and time.

Send a message to DSM.

Return text representation of error code for
specified PRIMOS subsystem.

Return PRIMOS 1II information.

Return current PRIMOS system name.
Indicate if login-over-login permitted.
Return operating system revision number.
Determine access to a segment.

Check validity of system name passed to it.

Return user number and count of users.

J

ABSWS

r Core QOperating System Services

r
ABSW

This procedure returns the cold-start setting of the abbreviations enable switch.

Usage

DCL ABSW ENTRY RETURNS (FIXED BIN);

ab_sw = AB$SWS ();

Parameters

ab_sw

RETURNED VALUE. Returns 1 if the command line abbreviation expansion
feature is globally enabled. Returns O if the feature is globally disabled. If the
feature is enabled, individual users may still elect to disable it.

Discussion
r This function cannot be called from FTN because it has no arguments.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.
r R-mode: Not available.

~ Second Edition 2-3

CKDYN$

Subroutines Reference lll: Operating System

CKDYN$

2-4

Second Edition

This routine accepts a dynamic entrypoint (DYNT) name and determines
whether that routine is currently accessible through the PRIMOS dynamic
linking mechanism.

Usage
DCL ROUTINE_NAME ENTRY (CHAR(32) VAR, FIXED BIN);
CALL CKDYNS (routine_name, code);

Parameters

routine_name

INPUT. The name of the dynamic entrypoint. Specify this name in uppercase

letters. If you specify it in lowercase letters, or in a mixture of uppercase and
lowercase, CKDYNS$ may fail to find the entrypoint.

code
OUTPUT. Standard error code. Possible values are

E$SOK Dynamic entrypoint routine_name was found.
ESFNTF Dynamic entrypoint routine_name was not found.
Discussion

CKDYNS$ looks for the entrypoint in PRIMOS, and in all executable program
format (EPF) libraries and static-mode shared libraries currently listed in the
user’s ENTRY$ search list. If a library does not appear in the ENTRY$ search
list, its entrypoints are not accessible to CKDYNS.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

J

)

)

CL$MSG

Core Operating System Services

CLSMSG

This routine returns the text of a specified command line system prompt.

Usage

DCL CL$MSG ENTRY (FIXED BIN, FIXED BIN, FIXED BIN,
CHAR(*)VAR, FIXED BIN);

CALL CL$SMSG (key, in_code, msg_size, msg, code);

Parameters

key
INPUT. Specify one of the two following keys, to select either the long or the
brief form of the system prompt.

K$LONG Long form
K$BRIEF Brief form

in_code
INPUT. Specify a numeric value as indicated below to select one of the three
possible types of system prompt (error, warning, or ready).

>0 Error prompt
<0 Warning prompt
0 Ready prompt
msg_size

INPUT. Specify the maximum size in characters of the buffer specified in the
msg parameter (see below).

msg
OUTPUT. A buffer that receives the text of the system prompt.

code
OUTPUT. The error code. Among the possible values are

E$OK No error.
E$BKEY Aninvalid key is specified in key.

Second Edition 2-5

CL$MSG

Subroutines Reference lil: Operating System

E$BFTS The maximum size of the prompt, as specified in msg_size,
is too small. The text returned to msg is truncated to the
number of characters specified in msg_size.

E$BLEN A negative value is specified for msg_size. msg_size
must be positive.

Discussion

As specified by the caller, CLSMSG retumns the text, in long or brief form, of the
system’s command line ready prompt, wamning prompt, or error prompt. The
system issues a ready prompt after the successful execution of a PRIMOS
command. It issues a waming prompt after an error occurs during execution of a
command that does not prevent execution from completing. It issues an error
prompt after an error occurs that prevents execution from completing.

By default, the ready, warning, and error prompts are ‘OK, ’, ‘OK, ’, and ‘ER!’,
respectively. You can specify alternatives to these defaults using the RDY
command. For information about the RDY command, see the PRIMOS
Commands Reference Guide.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.
R-mode: Not available.

Effective for PRIMOS Revision 21.0 and subsequent revisions.

2-6 Second Edition

J

~
r

CPUID$

A

CPUID$

Core Operating System Services

This routine determines on which Prime computer model the program is running.

Usage

DCL CPUID$ ENTRY (POINTER, FIXED BIN);

CALL CPUIDS (struc_ptr, code);

Parameters

struc_ptr

INPUT — OUTPUT. This parameter points to a structure of user memory
with the following layout:

1l structure,
2 version FIXED BIN, /* Must be 1. */
2 cpu_model FIXED BIN(31),
2 microcode,
3 resl BIT(8),
3 mfg _rev BIT(8),
3 eng _rev FIXED BIN,
2 proc_options,
3 res2 BIT(15),
3 info_series BIT,
2 res3 FIXED BIN(31),
2 resd4 FIXED BIN(31):

The fields are defined as follows:

version

Input value. Specifies which version of the structure the caller is expecting to
receive. Must be 1.

cpu_model

Code value indicating the processor model number. Sce Discussion below for
a list of the possible values.

resl
Reserved.

Second Edition 2-7

CPUID$

Subroutines Reference lll: Operating System

2-8 Second Edition

mfg_rey
Manufacturing revision number of microcode installed.

eng_rev
Engineering revision number of microcode installed.

res2
Reserved.

info_series
If 1, indicates the processor has special microcode assist for Prime

INFORMATION ™, If 0, indicates the processor has no such microcode
assist.

res3, res4
Reserved.

code
OUTPUT. Standard error code. Possible values are

E$SOK No error
E$BPAR version is not 1
Discussion

At Rev. 20.2 and later revisions, the following values can be retumed in
cpu_model:

Value Processor Model

0 P400 with rev A microcode, or original PS00
1 P400 with rev B or later microcode

P350

P250-11, P450, or P550-1

P750

Upgraded PS00, or P650

P150, or P250-1

P850

o O N N AW

1450-11

J

http://info_seri.es

D

CPUID$

Core Operating System Services

Value Processor Model

10 P550-11
11 P2250
15 P9950
16 P9650
17 P2550
18 P9955
19 P9750
21 P2350
22 P2655
23 P9655
25 P2450
26 P4050
27 P4150
28 P6350
29 P6550
30 P9955-11
31 P2755
32 P2455
33 P5310
34 P9755
35 P2850
36 P2950
37 P5330
38 P4450
39 P5370
40 P6650
41 P6450

Second Edition 2-9

CPUID$

Subroutines Reference Ill: Operating System

Value Processor Model

43 P5320
44 P5340

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Load SVCLIB.

2-10 Second Edition

J

J

\

)

DATE$

Core Operating System Services

DATES$

DATES$ returns the current date and time in binary format.

Usage

DCL DATE$ ENTRY RETURNS (FIXED BIN(31));

fs_date = DATES ();

Parameters

fs_date
RETURNED VALUE. The current date in file-system date format (FS-date).

Discussion

DATES$ returns the current date and time in the standard bit-encoded FS-date
format. The FS-date format is defined in Appendix C.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

Second Edition 2-11

DS$SEND_CUSTOMER_UM

Subroutines Reference Ill: Operating System

DS$SEND_CUSTOMER_UM

2-12 Second Edition

This routine enables a customer product to send an unsolicited message to the
Distributed System Management (DSM) server.

Usage
DCL DS$SEND_CUSTOMER_UM ENTRY (CHAR(*)VAR,
FIXED BIN,
CHAR(*)VAR,
FIXED BIN,
FIXED BIN);

CALL DS$SEND_CUSTOMER_UM (text, severity, product_name,
reserved, code);

Parameters

text
INPUT. The text of the unsolicited message. Limited to 1024 characters.

severi
INPOI’JT. The severity of the message. The following are valid severity codes
DS$SECURITY_VIOLATION 0
DS$SALARM 1
DS$WARNING 2
DSSINFORMATION 3
DS$FAILURE 4
DS$DIAGNOSTIC 5
DS$ACCOUNTING 6
DS$STATISTIC 7
DS$APPLICATION_DATA 8

These severity codes are defined in the insert file
SYSCOM>DS$SEVERITY_KEYS.INS.PL1.

J

)

DS$SEND_CUSTOMER_UM

Core Operating System Services

product_name

INPUT. The customer product’s name as registered with DSM. You can
specify this name in either uppercase or lowercase letters. If the product has
not been registered, this subroutine returns an error code.

reserved
INPUT. Reserved for future use. Must be zero.

code
QUTPUT. The return status codes, as defined in the nonstandard error file

SYSCOM>DS$ERROR_KEYS.INS.PL1. Possible values are
DS$OK Message sent successfully.

DS$ER_UNKNOWN_CUST_PROD The product specified is not registered
with DSM as a customer product.

DS$ER_TEXT TOO LONG Text length > 1024 characters.
DS$ER_BAD_TEXT_LENGTH Text length < O characters.
DS$SER_BAD_SEVERITY Severity is not a valid severity.
DS$ER_DSM_UNAVAILABLE DSM is not running on the local node.

DS$ER_INSUFFICIENT_RESOURCES There are insufficient system resources
available to process this unsolicited
message. There could be no virtual
circuits available or no memory
available. The queue to the DSM
server could be full or there could be
no ISC buffers available. You may
need to restart DSM,

DS$ER_INTERNAL_ERROR DSM has been unable to send the
product’s unsolicited message for an
unspecified reason. Report any
occurrence of this error to the System
Administrator.

Discussion

The DS$SEND_CUSTOMER _UM subroutine permits a customer product to
send an unsolicited message to DSM. This unsolicited message is handled by
the DSM Unsolicited Message Handler (UMH), as described in the DSM User’s
Guide.

Before calling this subroutine, the name of the customer product must be
registered with DSM. Your System Administrator should use the
CONFIG_DSM command to register the product name, then restart DSM with

Second Edition 2-13

DS$SEND_CUSTOMER_UM

Subroutines Reference lll: Operating System

the new configuration. The System Administrator should also use the
CONFIG_UM command to set up routing for the product’s unsolicited
messages. If no routing has been specified for a customer product, all of its
unsolicited messages are sent to the DSM default log. These commands are
further described in the DSM User’s Guide.

Loading and Linking Information

V-mode and I-mode: Use the library DSMLIB.BIN from the LIB directory.
R-mode: Not available,

Effective for PRIMOS Rev. 23.0 and subsequent revisions.

2-14 Second Edition

J

J

”~

- ERSTEXT
ERSTXT

)

ERS$STEXT

Core Operating System Services

This routine returns error message text for PRIMOS and specified PRIMOS
subsystems.

Usage

DCL ER$TEXT ENTRY (CHAR(*)VAR, FIXED BIN(15),
CHAR(*)VAR);

CALL ERSTEXT (sscode, ercode, ertext);

Parameters

sscode
INPUT. The subsystem for which ERSTEXT is to return an error message.
Specify a code that designates a PRIMOS subsystem. Subsystem codes are
defined in the file ERRORMSGHDLR.INS. language, where the suffix
language denotes the programming language. If the subsystem code is
invalid, ER$TEXT returns a null string. Some possible subsystem codes are

SSC$ERRD ERRD messages (ERRDS$)

SSC$SYNC Event synchronizers (SYNCS$)

SSC$TIMERS Timers (TIMERS$)

SSCS$ISC InterServer Communications (ISC$)
ercode

INPUT. The error code returned by the subroutine that reports the error. If
ercode is ESOK or invalid, ER$TEXT returns a null string.

ertext

OUTPUT. The text of the error message for subsystem sscode that
corresponds to the error code ercode.

Discussion

ER$TEXT finds an error message in a message file in the SYSOVL directory or
the PRIMOS internal message table, and returns the message to a variable.
ERS$STEXT recturns the error message in the same form that ER$PRINT prints it
on the terminal. ER$TEXT is similar in function to ERTXTS$, except that

Second Edition 2-15

ERS$TEXT

Subroutines Reference lli: Operating System

2-16 Second Edition

ERS$TEXT can retum error messages for particular PRIMOS subsystems., (The
obsolete subroutine ERTXTS$ is described in Appendix D.)

To find an error message, ERSTEXT first looks in the SYSOVL directory for the
SYSOVL message file, as specified by the subsystem name appended with
_ERROR_TABLE. For example, the ISC message file is named
ISC$_ERROR_TABLE. Note that by convention, names of PRIMOS
subsystems end with a dollar sign ($).

If the SYSOVL file exists, ERSTEXT returns the message in the SYSOVL file
that corresponds to the error code in ercode. If the SYSOVL file does not exist,
ER$TEXT looks for the message in the PRIMOS internal message table. The
messages in the PRIMOS internal message table are in English. If ERSTEXT
cannot find the message in the PRIMOS internal message table, it returns the
values sscode and ercode.

Programs that call ERSTEXT must include the file
SYSCOM>ERRORMSGHDLR.INS.language, where language is a suffix
specifying the program’s language. Programs should use the key values defined
in this file rather than the numeric values or strings to which the key values
correspond.

Loading and Linking Information
The dynamic link for ER$TEXT is in PRIMOS.

Effective for PRIMOS Revision 22.0 and subsequent revisions.

)
1

GINFO

f‘ Core Operating System Services

7 GINFO

GINFO indicates whether or not the user program is running under PRIMOS II.
If so, GINFO shows where PRIMOS 11 is loaded in the user address space.

Usage
DCL GINFO ENTRY ((6) FIXED BIN, FIXED BIN);
CALL GINFO (xervec, n);
r Parameters

xervec
OUTPUT. Contains n halfwords (up to 6) as follows.

Information for PRIMOS II:
Word Content
1 Low boundary of PRIMOS II buffers (77777 octal if 64K
~ PRIMOS II)
2 High boundary of PRIMOS II (77777 octal if 64K
PRIMOS 1I)
Reserved
4 Reserved
Low boundary of PRIMOS II and buffer (64K for
PRIMOS II only)
r 6 High boundary of 64K PRIMOS II
Information for PRIMOS:
Word Content
1 0
2 0
3-6 Reserved

INPUT. Maximum number of words to return.

Second Edition 2-17

GINFO

Subroutines Reference Ill: Operating System

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

2-18 Second Edition

J

J

r

-~ GSNAMS$

GSNAMS

Core Operating System Services

This subroutine returns the current PRIMOS system name.

Usage

DCL GSNAMS$ ENTRY (CHAR(32) VAR);

CALL GSNAMS (system_name);

Parameters

system_name
OUTPUT. Name of the caller’s system.

Discussion

GSNAMS can be used by any program to determine the name of the system it is
running on. System names are currently limited to 6 characters in length, but
Prime reserves the right to increase this limit to no more than 32 characters.
Programs should account for this possibility.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.
R-mode: Not available.

Effective for PRIMOS Revision 21.0 and subsequent revisions.

Second Edition 2-19

LOVS$SW

Subroutines Reference 1li: Operating System

LOV$SW

2-20 Second Edition

The LOVSSW function indicates whether the login-over-login function is
currently permitted.

Usage

DCL LOVS$SW ENTRY RETURNS (BIT (1) ALIGNED);

flag = LOV$SW();

Parameters

flag
RETURNED VALUE. Returns '1’b (true) if login-over-login is not
permitted, or '0’b (false) if it is permitted.

Discussion

The LOV$SW function sets the first bit of flag to 1 (true) if login-over-login is
not permitted, or to 0 (false) if it is permitted. The login-over-login function logs
a user off the system if the user executes the LOGIN command while already
logged in. Because LOV$SW has no arguments, it cannot be directly called
from FTN.

Example

The following fragment of C code invokes the LOV$SW function to determine
whether the login-over-login function is permitted.

short flag, lovS$sw{():

flag = lov$sw();

printf (“login-over-login is %sabled\n”,
(flag<0)?”en”:”dis"”);

The code also displays one of the mcssages below:

Login-over-login is enabled

Login-over-login is disabled

)

LOVSSW

Core Operating System Services

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

Effective for PRIMOS Revision 21.0 and subsequent revisions.

Second Edition 2-21

PRISRV

Subroutines Reference Ill: Operating System

PRI$RV

This routine returns the revision number of the currently running PRIMOS
operating system.

Usage

DCL PRISRV ENTRY (CHAR(32)VAR);

CALL PRISRY (primos_rev);

Parameters

primos_rey

OUTPUT. A 32-character varying string containing the PRIMOS revision
number.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.
R-mode: No special action.

2-22 Second Edition

J

J

RSEGAC$

~

Core Operating System Services

r RSEGACS$

This routine is used to verify that a particular segment exists. It also indicates the
requester’s access rights to the segment.

Usage

DCL RSEGAC$ ENTRY (FIXED BIN(15),
FIXED BIN(31)) RETURNS (BIT(1));

seg_exists = RSEGACS (segno, access);

Parameters

segno
INPUT. The segment number.

access
OUTPUT. The first halfword is reserved.

’ If the segment exists, the value returned in the second halfword indicates the
user’s access rights to the segment. Possible values and their interpretations
are

No access
Gate access
Read access

Read, Write access

W

Reserved

Read, Execute access

N O AW N = O

Read, Write, Execute access
seg_exists

OPTIONAL RETURNED VALUE. PL/I true if the segment exists; false if
the segment does not exist.

Second Edition 2-23

Y

RSEGACS$

Subroutines Reference Ill: Operating System

2-24 Second Edition

Discussion

If the segment does not exist, the call elicits a return FALSE ('0’b). If the
segment exists, a TRUE (’1°b) is returned and the access value for that segment
is also returned in the access argument.

FORTRAN programs cannot directly call this subroutine, because it has a
seven-character name. A given program may indirectly call it, for example, with
CALL SYNYM(segno, access), and at BIND time rename SYNYM as
RSEGACS.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: L.oad NPFTNLB.

R-mode: No special action.

J

Y

SNCHK$

SNCHK$

Core Operating System Services

This routine checks the validity of the system name passed to it.

Usage

DCL SNCHKS$ ENTRY (FIXED BIN, CHAR(*) VAR)
RETURNS (BIT(1) ALIGNED);

name_ok = SNCHKS$ (key, system_name);

Parameters

key

INPUT. Standard PRIMOS key value that defines restrictions on the
parameter system_name. Values for keys can be added together. Possible
values are

K$UPRC Mask name to uppercase before checking.
K$NULL Allow a null name.

system_name

INPUT/OUTPUT. System name being tested (input only, unless K$UPRC is
used; in that case, input/output).

name_ok

RETURNED VALUE. Set to true ('1°b) if the system name is valid, given the
restrictions of the keys; otherwise, set to false (0).

Discussion

SNCHKS$ enables subsystems that deal with system names at a command
interface to check the names for validity without knowing the syntax rules for
system names.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

Effective for PRIMOS Revision 21.0 and subsequent revisions.

Second Edition 2-25

USER$

Subroutines Reference lll: Operating System

USER$

2-26 Second Edition

This routine returns the user number and user count.

Usage

DCL USERS ENTRY (FIXED BIN, FIXED BIN);

CALL USERS (current_user_number, user_count);

Parameters

current_user_number
OUTPUT. User number of the process issuing the call.

user_count
OUTPUT. Total number of users logged into the system.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

J

)]

User Information Routines

Core QOperating System Services

This section describes the following subroutines:

Routine
ASSURS

CHG$PW
COMSAB

GENSPW
~ IDCHKS$
INSLO

LOGO$$
LUDEVS$
PRJID$
PTIME$
PWCHKS$
READY$
SID$GT
SUSR$
TISMSG

4 TIMDAT

TMRS$GINF

TMR$GTIM
TMRSLOCALCONVERT
TMR$UNIVCONVERT
UNO$GT

UTYPE$

VALID$

)

Function

Check process has given amount of time
slice left.

Change login validation password.

Expand a line using abbreviations
Preprocessor.

Generate a new login validation password.
Validate a name.

Determine whether a forced logout is in
progress.

Log out a user.

Return a list of devices that a user can access.
Return the user’s project identifier.

Return amount of CPU time used since login.
Validate syntax of a password.

Display PRIMOS command prompt.

Return user number of initiating process.
Test whether current user is supervisor.

Display standard message showing times
used.

Return timing information and user
identification.

Return permanent time information.
Return current system time.

Convert local time to Universal Time.
Convert Universal Time to local time.
List users with same name as caller.
Return user type of current process.

Validate a name against composite
identification.

Second Edition 2-27

ASSURS$

Subroutines Reference lll: Operating System

ASSURS$

2-28 Second Edition

ASSURS allows a process to ensure it receives a certain amount of uninterrupted
CPU time before its time slice ends.

Usage

DCL ASSUR$ ENTRY (FIXED BIN) RETURNS (BIT ALIGNED);

waited = ASSURS (desired_time);

Parameters

desired_time
INPUT. Time requested, in milliseconds.

waited

OPTIONAL RETURNED VALUE. Set to TRUE (’1°b) if the process waited
in a queue before receiving the amount of time requested.

Discussion

ASSURS returns immediately if the desired_time is less than the time remaining
in the current time slice. ASSURS reschedules the process if insufficient time is
left in the current time slice.

If desired_time is greater than the time slice, the process obtains only the
maximum time slice, and no more.

This procedure should be used when a time-critical application needs to use the
CPU uninterrupted by other user processes. Time slices are described in the
Operator’s Guide to System Commands.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

)

} CHG$PW

r- Core Operating System Services

CHGS$PW

CHG$PW changes the login validation password.

Usage

DCL CHG$PW ENTRY (CHAR(16)VAR, CHAR(16) VAR, FIXED BIN);

CALL CHGS$PW (old_pw, new_pw, code);

Parameters

old_pw
INPUT. The user’s current login validation password.

new_pw

INPUT. The new password desired. Passwords may contain any characters

except PRIMOS reserved characters (see the PRIMOS User’s Guide).

Lowercase alphabetic characters are mapped to uppercase by CHG$PW. At
f the System Administrator’s option, null passwords may be disallowed.

code
OUTPUT. Standard error code. Possible values are
E$OK No error.
E$BPAR One of the passwords is illegal.
E$BPAS The old password passed does not match the actual

f password.

ES$EXST The new password is the same as the old one.

E$GPON The new password is not set because generated passwords
are enabled. GENSPW generates a new login validation
password for the user.

E$SWTPR The disk is write-protected.

Discussion

CHGS$PW allows a user to change the login validation password. This is the
password that a user gives during the LOGIN command procedure.

If the System Administrator has enabled generated passwords for all users,
r‘ CHGS$PW docs not set a new password for a user. In this case, the user must use

Second Edition 2-29

)

CHGS$PW

Subroutines Reference lli: Operating System

GENS$PW to generate a new password. The System Administrator may choose
to disallow null passwords.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

Effective for PRIMOS Rev. 19.0 and subsequent revisions.

2-30 Second Edition

COMS$AB

Core Operating System Services

COMS$AB

This routine expands a line of text using the PRIMOS abbreviation preprocessor.

Usage

DCL COMS$AB ENTRY (CHAR(*)VAR, FIXED BIN, FIXED BIN);

CALL COMS$AB (command, command_size, code);

Parameters

command

INPUT/OUTPUT. On input, contains the string to be expanded. On output,
contains the expanded string. The input value of command should not be
more than 1024 characters long.

command_size
INPUT. Maximum length of command.

code
OUTPUT. Standard error code. Possible values are

ESOK No error,

E$TRCL Expanded line was longer than command_size and was
truncated.

Discussion

COMSAB expands command, which can contain any text, as though it were a
line typed at the ready prompt. COMS$AB displays appropriate error messages if
there are problems with the abbreviations file, or the output line is truncated. If
abbreviations are turned off, command is not changed. See the PRIMOS User’s
Guide for more information on the abbreviations preprocessor.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.
r R-mode: Not available.

Second Edition 2-31

b

GEN$PW

Subroutines Reference Ill: Operating System

GEN$PW

This routine generates a new login validation password.

Usage

DCL GEN$PW (CHAR(16) VAR, CHAR(16) VAR, FIXED BIN(15));

CALL GENSPW (old_pw, new_pw, code);

Parameters

old_pw
INPUT. The user’s current password.

new_pw
OUTPUT. The new password that PRIMOS generated.

code
OUTPUT. The status code. Possible values are

E$OK No error

E$BPAS The old_pw value does not match the actual password.

E$BPAR The old_pw value is in an illegal format.

ESNGPW Computer-generated passwords are not enabled.
Discussion

GENS$PW generates a new login validation password for the user. GEN$PW can
be used only when computer-generated passwords are enabled.

Loading and Linking Information
The dynamic link for GEN$PW is in PRIMOS.

Effective for PRIMOS Revision 22.0 and subsequent revisions.

2-32 Second Edition

J

™N

J

r

7 DCHK$

IDCHK$

Core Operating System Services

This function checks that the name passed is a legal user or project name.

Usage

DCL IDCHKS$ ENTRY (FIXED BIN, CHAR(*)VAR)
RETURNS (BIT (1));

id_ok = IDCHKS (key, id);

Parameters

key
INPUT. Restrictions on the name. Keys may be added together:

K$UPRC Mask id to uppercase before checking.
K$WLDC Allow wildcard characters in id. (See the PRIMOS

User’s Guide.)
K$NULL Allow null ids.
K$GRP Check for group name.

INPUT/OUTPUT. The name to check (input unless key is KSUPRC; in that
case, input/output). The name must be between 1 and 32 characters long, start
with an uppercase letter, and contain only uppercase letters, numbers, and the
special characters . (period), $ (dollar sign), and _ (underscore).

id_ok
RETURNED VALUE. Set to PL/I true ("1°b) if the name is valid given the
restrictions of the keys.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.
R-mode: No special action.

Second Edition 2-33

INSLO

Subroutines Reference Ill: Operating System

INSLO

This routine is used to determine whether a forced logout is in progress.

Usage

DCL INSLO ENTRY RETURNS (BIT ALIGNED);

in_logout =INSLO ();

Parameters

in_logout

RETURNED VALUE. Returns true (’1°b) if the process has received a forced
logout.

Discussion

If the process has an on-unit for the LOGOUTS condition, it can continue to run
for a short time. This function returns true if the process is in this state.

This function cannot be called from FTN because it has no parameters,

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.
R-mode: No special action.

2-34 Second Edition

J

“N

y

LOGO$$

LOGOS$S

Core Operating System Services

LOGOS$S logs out a user. The routine can be used by the supervisor terminal
(User 1) to log out any user, or a user program may log out any process it may
have started.

Usage

DCL LOGOS$$ ENTRY (FIXED BIN, FIXED BIN, CHAR(32),
FIXED BIN, FIXED BIN(31), FIXED BIN);

CALL LOGOSS (key, user, usrnam, unlen, reserv, code);

Parameters
key
INPUT. Operation to be performed. Possible values are
-1 Log out all users (supervisor only).
0 Log out self (same as LOGOUT command).
Log out specific user by number (same as LOGOUT —-NN).
2 Log)out specific user by name (supervisor or its phantoms
only).

user

INPUT. User number to be logged out. This value is examined only if key is
greater than 0.

usrnam

INPUT. Name of user to be logged out; must correspond to number supplied
in user. This value is examined only if key is 2.

unlen

INPUT. Length of usrnam in characters. This value is examined only if key
is 2.

resery
Reserved for future use.

Second Edition 2-35

LOGOSS

Subroutines Reference lil: Operating System

code
OUTPUT. Standard error code. Possible values are

E$OK No error.

E$BKEY Bad key.

E$BPAR Invalid number is specified in user.

E$BNAM usrnam does not correspond to user.

E$NRIT Attempt to log out user with name different from caller.
Discussion

Key option 0 (Log out self) does not close MIDASPLUS ™ files or release
MIDASPLUS records. MIDASPLUS users should unlock records and close
files before calling LOGOS$$. Refer to the MIDASPLUS User’s Guide for further
information.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

2-36 Second Edition

N

)

~

7 LUDEVS

LUDEVS

Core Operating System Services

This subroutine retumns a list containing devices that a user can access.

Usage

DCL LUDEVS$ ENTRY (FIXED BIN, PTR, FIXED BIN, FIXED BIN);

CALL LUDEVS (user_no, strucptr, max_devices, code);

Parameters

user_no

INPUT. User number of the person for whom device access information was
requested. If user_nois 0, this indicates the current user.

strucptr

INPUT —> OUTPUT. Pointer to an area of memory that will contain the list
of devices that the user can access. The Structure Description section includes
the format of this structure.

max_devices
INPUT. Maximum number of devices that the caller’s structure can hold.

code
OUTPUT. Standard error code. Possible values are
ESOK No error.

E$BPAR Invalid parameter. Returned if user no is greater than the
number of users configured for the system or less than 0, or
if max_devices is less than 1.

E$BVER Invalid version number.

E$BFTS max_devices is not large enough to hold all accessible
devices for this user.

Second Edition 2-37

LUDEV$

Subroutines Reference Iil: Operating System

2-38 Second Edition

Structure Description

The parameter strucptr points to a structure, device_table, which has the
following format:

DCL 1 device table,
2 wversion FIXED BIN,
2 device_count FIXED BIN,
2 device (*) CHAR(32) VAR;

version
INPUT. The version number of the structure to be returned. Must be set to 1.

device_count
OUTPUT. The number of devices that the specified user can access.

device
OUTPUT. Array of devices that the specified user can access.

Discussion

The devices listed are those that were specified with the ASSIGN command.
Refer to the PRIMOS Commands Reference Guide for more information about
this command.

Example

The following F77 program displays the names of up to five devices that the user
can access.

SINSERT SYSCOM>ERRD.INS.FTN
INTEGER*2 STRUC(87) ,CODE

The next four declarations define fields that will
redefine the contents of the output structure.
Note that elements of the device-name field are

34 bytes apart — CHAR(32)VAR means 32

bytes, plus one halfword for the count.

a0

INTEGER*2 DEVCT,LEN (17, 5)

CHARACTER*34 NAME (5)

EQUIVALENCE (STRUC(2),DEVCT), (STRUC(3),LEN(1,1))
EQUIVALENCE (STRUC(4),NAME (1))

J

LUDEV$

Core Operating System Services

C Code starts here

STRUC(1)=1
CALL LUDEVS (INTS(0),LOC(STRUC), INTS(5),CODE)

C Comment if more than 5 devices
IF (CODE.EQ.ESBFTS) PRINT *, ‘More than S5 devices
assigned.’
IF (CODE.NE.ES$BFTS) PRINT 100, DEVCT

100 FORMAT (' ', Il, ' devices assigned.’)
IF (DEVCT.EQ.0) CALL EXIT

C Display all the names
DO 10 I = 1, MIN(DEVCT, 5)
10 PRINT *, NAME(I) (1:LEN(1,1I))
CALL EXIT

END

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

Effective for PRIMOS Revision 21.0 and subsequent revisions.

Second Edition 2-39

PRJIDS

Subroutines Reference Ill: Operating System \

)

PRJID$

This subroutine is part of the User Registration and Profiles system. It returns the
user’s project name.

Usage

DCL PRJID$ ENTRY (CHAR(32)VAR);

CALL PRJIDS (project_id_name);

Parameters “ \

project_id_name
OUTPUT. User’s current project name.

Discussion

Trailing blanks on the project name are not retumned. If the user is logged into -~
the default project, the returned name is DEFAULT.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.
R-mode: Not available. »-\

2-40 Second Edition A\

)

PTIMES$

PTIME$

Core Operating System Services

This procedure reads the amount of CPU time the process has used since login, It
is a convenient alternative to TIMDAT if only CPU time is required.

Usage

DCL PTIMES ENTRY RETURNS (FIXED BIN(31));

elapsed_time = PTIMES ();

Parameters

elapsed_time

RETURNED VALUE. Indicates the amount of CPU time the process has
used since login. The time is returned in units of 1.024 milliseconds.

Discussion

To determine how much CPU time is used during execution of some code
sequence, call PTIMES before the code is executed and save the value; then call
PTIMES after the code is executed. The difference between the values is the
time used.

Because this function has no parameters, it cannot be directly called from FTN.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

Second Edition 2-41

PWCHKS$

Subroutines Reference 1ll: Operating System

PWCHK$

This function makes sure that the password supplied is a legal login password.

Usage

DCL PWCHKS ENTRY (FIXED BIN, CHAR(*)VAR)
RETURNS (BIT(1));

pw_ok = PWCHKS (key, password);

Parameters
key
INPUT. An option to restrict values of password. Keys may be added
together:
K$UPRC Change password to uppercase before checking.

K$NULL Allow null passwords.

password

INPUT. Must be 1 to 16 characters long, and cannot contain PRIMOS
reserved characters.

pw_ok
RETURNED VALUE. Set to PL/I true (’1°b) if the password is legal.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

2-42 Second Edition

J

)

READY$

READY$

Core Operating System Services

READYS$ displays the PRIMOS command-level prompts.

Usage

DCL READYS$ ENTRY (BIT(16), FIXED BIN);

CALL READYS (format, typecode);

Parameters

Jormat

INPUT. Only the most significant bit is used; the rest are reserved. If the most
significant bit is 1, the brief form of the prompt is displayed. If the most
significant bit is O, the long form is displayed.

typecode

INPUT. Prompt type code. If this value is greater than zero, the error prompt
is displayed. If the value is less than zero, the waming prompt is displayed. If
the value is zero, the normal prompt is displayed.

Discussion

See the PRIMOS User's Guide for a description of the command-level prompts.
Note that no newline follows the brief forms of the prompts.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

Second Edition 2—43

SID$GT

Subroutines Reference lll: Operating System

SID$GT

2-44 Second Edition

This routine returns the user number of the process that started the current
process.

Usage

DCL SID$GT ENTRY (FIXED BIN);

CALL SID$GT (spawner_id);

Parameters

spawner_id
OUTPUT. User number of the process that started the current process.

Discussion

If the process that calls SID$GT is a phantom, spawner_id is the user number of
the user that started the phantom. If the process is a batch job, spawner _id is the
user number of the batch server, a special process that manages the batch
subsystem.

Interactive users have no spawner. If SID$GT is called by an interactive user,
spawner_id is zero.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.
R-mode: Not available.

J

)

Y)

SUSR$

SUSR$

Core Operating System Services

SUSRS$ determines whether the currently executing process is the supervisor
process.

Usage

DCL SUSR$ ENTRY RETURNS (BIT(1) ALIGNED);

susr_flag = SUSRS ();

Parameters

susr_flag
RETURNED VALUE. Returns true (’1°b) if the process is the supervisor
process; otherwise returns false ('0’b).

Discussion

SUSRS$ determines whether the currently executing process is the supervisor
process (normally User 1). The supervisor process is the proccss that runs at the
operator console.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared librarics: Load NPFTNLB.

R-mode: Not available.

Second Edition 2-45

TISMSG

Subroutines Reference llI: Operating System

TISMSG

2-46 Second Edition

This routine types a standard format message that displays elapsed time, CPU
time, and I/O time. The standard format is that used by PRIMOS during logout
or in response to the TIME command.

Usage

DCL TI$SMSG ENTRY (FIXED BIN, FIXED BIN(31), FIXED BIN(31),
FIXED BIN(31));

CALL TI$SMSG (reserv, connect, cpu, io);

Parameters

reserv
INPUT. This value is not used.

connect
INPUT. Clock time elapsed since login (connect time), in minutes.

cpu

INPUT. CPU time used, in seconds.
io

INPUT. 1/O time used, in seconds.

Discussion

All the parameters are input parameters. The user must provide the values that
the procedure formats and types.

An example of the way this routine can be used is to call LON$R (see Chapter 5)
and print the returned values.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

) J

r

7 TIMDAT

)

TIMDAT

Core Operating System Services

This routine returns the date, time, CPU time, and disk I/O time used since login,
the user’s unique number on the system, and the user ID in a structure.

Usage

DCL TIMDAT (1..., FIXED BIN);

CALL TIMDAT (struc, num);

Parameters

struc

OUTPUT. A structure of the following elements:

2
2

NN

num

date CHAR(6),

time,

3 minutes FIXED BIN,
3 seconds FIXED BIN,
3 ticks FIXED BIN,
CPU_time,

3 seconds FIXED BIN,
3 ticks FIXED BIN,

IO_time,
3 seconds FIXED BIN,
3 ticks FIXED BIN,

Current date in MMDDYY format.

Time in minutes since midnight.
Seconds passed after the minute.
Ticks passed after the second.

CPU time used in seconds.
CPU ticks passed after the
second.

Disk I/0 time used in seconds.
Disk I/O ticks passed after the
second.

ticks_per_ sec FIXED BIN, Number of ticks per second.

user number FIXED BIN,
user name CHAR(32):

User number.
User login name.

INPUT. Indicates maximum number of halfwords to be returned. If this
number is more than 28, only 28 halfwords are returned.

Discussion

This routine does not return any useful information under PRIMOS 1I.

Disk I/O time is from start of seek to end of transfer, including both explicit file
I/O and paging operations. Processor time used in controlling the transfer is
counted under CPU time.

Second Edition 2-47

TIMDAT

Subroutines Reference lll: Operating System

FORTRAN programmers should declare the structure as an array of 28
sixteen-bit integers.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

2-48 Second Edition

r

7 IMR$GINF
TMRSIF

TMR$GINF

Core Operating System Services

This routine returns permanent time information.

Usage

DCL TMR$GINF ENTRY (1, 2 FIXED BIN(31), 2 FIXED BIN(15),

2, 3 FIXED BIN(31), 3 FIXED BIN(31),
2, 3 FIXED BIN(31), 3 FIXED BIN(31),
2 FIXED BIN(31));

CALL TMRS$GINF (Timelnfo);

Parameters

Timelnfo
OUTPUT. A record to which TMRS$GINF returns permanent time
information.

Discussion

TMRS$GINF returns system time information that is not often changed. This
information is known as permanent time information. It consists of the
following items:

The time zone in which this processor resides, expressed in milliseconds.
The time zone ranges from 11 hours behind (—39600000) to 13 hours ahead
(46800000) of Universal Time. Universal Time is the elapsed time since
midnight of January 1, 1901, and is expressed in the mean solar time of the
meridian of Greenwich.

A value indicating whether or not daylight savings time will be or is in
cffect this year. The value 1 (= TRUE) indicates that daylight savings time
will be or is in effect this year. The value 0 (= FALSE) indicates that
daylight savings time is not and will not be in effect this year.

The date and time of day when local time will be offsct from standard local
time to indicate the start of daylight savings time. This value is given in
Universal Time.

The date and time of day when local time will be reset to standard local
time to indicate the end of daylight savings time. The ending time for

Second Edition 2-49

TMR$GINF

Subroutines Reference Ili: Operating System

daylight savings time is given in Universal Time. The ending time for
daylight savings time must be later than the starting time.

e The offset from standard local time that is in effect during the period from
start date to end date. The offset can be negative or positive, to set time
backward or forward. The offset is expressed in milliseconds, and can
range from 4.66 hours behind (—16777216) to 4.66 hours ahead
(16777216).

Example

The following programming example illustrates the use of TMR$GINF to return
permanent time information.

dcl 1 PermTimeInfo BASED,
2 CurrentTimeZone fixed bin (31),
/* Time zone of processor */
2 OffsetEnable fixed bin (15), /* DST on */

2 StartDate, /* Start date, DST */
3 High fixed bin (31),
3 Low fixed bin (31),
2 EndDate, /* End date, DST */
3 High fixed bin (31),
3 Low fixed bin (31),

2 CurrentOffset fixed bin (31);
/* Offset from local time */

dcl 1 TimeInfo like PermTimeInfo;

dcl tmr$ginf entry(l, 2 fixed bin (31), 2 fixed bin (15),
2, 3 fixed bin (31), 3 fixed bin (31),
2, 3 fixed bin (31), 3 fixed bin (31),
2 fixed bin (31));

call tmr$ginf (TimeInfo) ;
Loading and Linking Information

The dynamic link for TMR$GINF is in PRIMOS.

Effective for PRIMOS Revision 22.0 and subsequent revisions.

2-50 Second Edition

a

7 IMRSGTIM
TMR$TM

~

-~

N

TMR$GTIM

Core Operating System Services

This routine returns the current system time.

Usage

DCL TMRS$GTIM ENTRY (1, 2 FIXED BIN(31), 2 FIXED BIN(31));

CALL TMRS$GTIM (CurrentTime);

Parameters

CurrentTime
OUTPUT. The current system time.

Discussion

TMRS$GTIM returns the current system time, expressed in milliseconds. The
current system time is given in Universal Time. Universal Time is the elapsed
time since midnight of January 1, 1901, and is expressed in the mean solar time
of the meridian of Greenwich.

Example
See the example for TMR$UNIVCONVERT.

Loading and Linking Information
The dynamic link for TMR$GTIM is in PRIMOS.

Effective for PRIMOS Revision 22.0 and subsequent revisions.

Second Edition 2-51

TMRSLOCALCONVERT

Subroutines Reference Ill: Operating System

TMRSLOCALCONVERT
TMR$LU

This routine converts local time to Universal Time.

Usage

DCL TMRSLOCALCONVERT ENTRY (1, 2 FIXED BIN(15),
2 FIXED BIN(15),
2 FIXED BIN(15),
2 FIXED BIN(15),
2 FIXED BIN(15),
1, 2 FIXED BIN(31),
2 FIXED BIN(31));

CALL TMRSLOCALCONVERT (LocalTime, UnivTime);

Parameters

LocalTime

INPUT. The local time value that is to be converted to Universal Time. Local
time is expressed in a record of the following form:

Month: [1..12]

Day: [1..31];

Year: [0..99];

Hour: [0..23];

Minute: [0..59];

UnivTime
OUTPUT. The Universal Time equivalent, in milliseconds, of the local time
specified by the argument LocalTime.

Discussion

TMRSLOCALCONVERT converts local time to Universal Time. Universal
Time is the elapsed time since midnight of January 1, 1901, and is expressed in
the mcan solar time of the meridian of Greenwich,

The output of TMR$LOCALCONVERT can be used as input to the subroutineg
TMRS$SABS to set an absolute timer. For information about timer subroutines,
see the Subroutines Reference V: Event Synchronization.

2-52 Second Edition

J

J

TMRS$LOCALCONVERT

Core Operating System Services

Example

The following programming example calls TMRSLOCALCONVERT to convert
the local time of 12 noon, July 4, 1987 to Universal Time.

dcl 1 LocTime based,

2 Month fixed bin,
2 Day fixed bin,
2 Year fixed bin,
2 Hour fixed bin,
2 Minute fixed bin;

dcl 1 AbsocluteTime based,
2 High fixed bin (31),
2 Low fixed bin (31):

dcl 1 LocalTime like LocTime;
dcl 1 UnivTime like AbsoluteTime;
dcl tmr$localconvert external entry
(1, 2 fixed bin, 2 fixed bin,
2 fixed bin, 2 fixed bin,
2 fixed bin,
1, 2 fixed bin (31),
2 fixed bin(31)):;

LocalTime.Month =
LocalTime.Day = 4;
LocalTime.Year = 87;
LocalTime.Hour = 12;
LocalTime.Minute = 0;
call tmrS$localconvert (LocalTime,UnivTime) ;

7;

Loading and Linking Information

The dynamic link for TMRSLOCALCONVERT is in PRIMOS.

Effective for PRIMOS Revision 22.0 and subsequent revisions.

Second Edition 2-53

TMR$SUNIVCONVERT

Subroutines Reference IlI: Operating System

TMRSUNIVCONVERT
TMR$UL

This routine converts Universal Time to local time.

Usage

DCL TMR$UNIVCONVERT ENTRY (1, 2 FIXED BIN(31),
2 FIXED BIN(31), 1, 2 FIXED BIN(15),
2 FIXED BIN(15), 2 FIXED BIN(15),
2 FIXED BIN(15), 2 FIXED BIN(15));

CALL TMR$UNIVCONVERT (UnivTime, LocalTime);

Parameters

UnivTime
INPUT. The Universal Time value that TMR$UNIVCONVERT is to convert
to local time, expressed in milliseconds.

LocalTime

OUTPUT. The local time equivalent of the Universal Time specified by the
argument UnivTime. TMR$UNIVCONVERT returns this information to a
record of the following form:

Month: [1..12];

Day: [1..31};

Year: [0..99];

Hour: [0..23];

Minute: [0..59];

Discussion

TMR$UNIVCONVERT converts Universal Time to local time. Universal Time
is the elapsed time since midnight of January 1, 1901, and is expressed in the
mean solar time of the meridian of Greenwich.

As input, TMR$UNIVCONVERT can use output from the subroutine
TMRS$GTIM.

2-54 Second Edition

)

TMR$UNIVCONVERT

Core Operating System Services

Example

The following programming example calls TMR$GTIM to get the current
system time in milliseconds, and calls TMR$UNIVCONVERT to convert the
system time to Universal Time.

dcl 1 LocTime based,

2 Month fixed bin,
2 Day fixed bin,
2 Year fixed bin,
2 Hour fixed bin,
2 Minute fixed bin;

dcl 1 AbsoluteTime based,
2 High fixed bin (31),
2 Low fixed bin (31);

dcl 1 LocalTime like LocTime;
dcl 1 UnivTime like AbsoluteTime;

dcl tmr$gtim external entry (1, 2 fixed bin (31),

2 fixed bin (31)):;
dcl tmr$Sunivconvert external entry (1, 2 fixed bin(31),
fixed bin(31),
fixed bin,
fixed bin,
fixed bin,
fixed bin,
fixed bin):

1,

NN DNN

/* get current time in milliseconds */
call tmr$gtim(UnivTime) ;

/* convert it into local time */
call tmr$univconvert (UnivTime,LocalTime) :

Loading and Linking Information

The dynamic link for TMR$UNIVCONVERT is in PRIMOS.

Effective for PRIMOS Revision 22.0 and subsequent revisions.

Second Edition 2-55

UNOSGT

Subroutines Reference 1ll: Operating System

UNOSGT

This routine lists all the processes with the same user name as the calling user.

Usage

DCL UNOS$GT ENTRY ((*)FIXED BIN, FIXED BIN, FIXED BIN);

CALL UNOSGT (id_list, max_ids, num_ids);

Parameters

id_list
OUTPUT. An array of 16-bit integers that contains the user numbers of
processes that have the same user name as the calling user.

max_ids
INPUT. The maximum length of id_list.

num_ids
OUTPUT. The number of values stored in id list.

Discussion

If the number of processes with the same name is greater than max_ids, only
max_ids values are stored. If this happens, there is no indication of the error.

The calling user’s process number is not among those returned.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

2-56 Second Edition

r

4 UTYPES

UTYPES

Core Operating System Services

This routine returns the user type of the current process.

Usage

DCL UTYPE$ ENTRY (FIXED BIN);

CALL UTYPES (user_type);

Parameters

user_type
OUTPUT. Type of the process making the call. User types are defined below.

Discussion

UTYPES returns the user type of the current process. The user type identifies
the process by certain classes defined below. It is the preferred method of
determining whether or not a given process is a phantom.

These type definitions are inserted into a source by means of the INCLUDE
command, as discussed for each language in Subroutines Reference I: Using
Subroutines. The definitions are provided for FORTRAN, PL/I, and PMA in the
following files:

SYSCOM>USER_TYPES.INS.FTN
SYSCOM>USER_TYPES.INS.PL1
SYSCOM>USER_TYPES.INS.PMA

Users who program in other languages such as Pascal or C should rewrite the
SYSCOM file for their languages. The names in this file may not be used in
COBOL, as they contain dollar signs. A COBOL program should use the
numeric values instead of names.

Possible user types are

USNORM Local terminal user.

U$TREM User gone to a remote system.

USFREM User from a remote system.

U$THRU User logged through (both to and from remote).
US$SUSR Supervisor (User 1).

Second Edition 2-57

UTYPES$

Subroutines Reference IlI: Operating System

2-58 Second Edition

U$TFAM FAM I running at a user terminal.

US$PH Cominput-style phantom.

U$CPH CPL-style phantom.

USNPX Slave process.

USPFAM FAM I running as a phantom.
USNET Network server process (NETMAN).
US$RTS Route-through server process.
USFORK PRIMIX ™ Forked process.

USLSR Login Server.

USLOIP Logout in progress.

U$BACH Batch phantom.
Types USNPX, USNET, USRTS, and USLSR do not occur in processes that run
user programs; they are special process types reserved for use by PRIMOS.
Types USTFAM and U$SPFAM do not occur in new versions of PRIMOS.

There are also four special types that mark the ranges of terminal and
nonterminal (phantom) users. These markers are

USLTUT Lowest terminal user type
USHTUT Highest terminal user type
USLPUT Lowest phantom user type

USHPUT Highest phantom user type

By using these marker types, callers can avoid having to change the range they
check when new types are added to the list.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.
R-mode: Not available.

J

‘&

7 VALIDS

)

VALIDS

Core Operating System Services

This routine validates a string against the user’s composite identification.

Usage

DCL VALIDS$ ENTRY (CHAR(32) VAR, FIXED BIN)
RETURNS (BIT(1));

id_valid = VALID$ (name, code);

Parameters

name
INPUT. Identification to be checked.

code
OUTPUT. Standard error code. Possible values include
ESOK No error.

E$BID name is not a legal identifier. The value of name must be a
valid login name or ACL group name.

id_valid

RETURNED VALUE. Set to true (’1°b) if name is either the user’s login
name or is one of his ACL group names.

Discussion

VALIDS$ checks an arbitrary string against a combination of the user’s login
name and ACL groups (the user’s composite identification). This routine is used
by the File ACL system to determine whether the current user matches some
id:access pair. The routine is, however, not directly related to the file system and
may be of use in another context.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

Second Edition 2-59

Subroutines Reference lll: Operating System

System Status and Metering Routines

This section describes the following subroutines:

Routine Function

DS$AVL Return data about a disk partition.
DS$ENV Return data about a process’s environment.
DS$UNI Return data about file units.

GSMETR Return a variety of metering information.

2-60 Second Edition

J

DS$AVL

DSS$AVL

Core Operating System Services

This subroutine returns information about a disk partition in a structure.

Usage

DCL DS$SAVL ENTRY (POINTER, FIXED BIN, FIXED BIN);

CALL DSS$AVL (struc_ptr, disk_no, code);

Parameters

struc_ptr

INPUT —> OUTPUT. A pointer to a structure that will contain the output
information. See below.

disk_no

INPUT. The logical disk partition number (Idev) for which information is
being requested.

code
OUTPUT. Standard crror code. Possible values include

E$OK No error.

E$BVER version is an illegal value.

E$BPAR Invalid logical disk number specified.

ESNINF Specified partition does not exist or is not added.
ESFNTF The area of the disk that contains the availability

information cannot be found or accessed.

ES$SIREM The specified partition is mounted on a remote node.

Structure Description

The parameter struc_ptr points to a structure, avail_list, of the following format:

DCL 1 avail 1list,

version FIXED BIN,

disk name CHAR(32)VAR,
partition size FIXED BIN(31),
available size FIXED BIN(31),
date time saved FIXED BIN(31);

NN NN

Second Edition 2-61

DS$AVL

Subroutines Reference lll: Operating System

2-62 Second Edition

version
INPUT. The version number of the structure to be returned. Must be set to 1.

disk_name
OUTPUT. The name of the partition.

partition_size
OUTPUT. The maximum capacity of the partition, in records.

available_size
OUTPUT. The number of free records in the partition.

date_time_saved

OUTPUT. The date and time when the partition was last backed up with the
MAGSAV utility, in file-system date format. If the partition has never been
backed up with MAGSAYV, this field is zero. File-system date format is
described in Appendix C.

Discussion

DS$AVL can only return information about disks listed in your system’s disk
table: local disks and specifically configured remote disks. The logical device
(Idev) numbers for these disk partitions are shown in the STATUS DISKS
display. These ldev numbers are retumed by the routine LUDSKS$ and used by
the routine AT$LDEV.

If you have the common file system name space (i.e., the Name Server)
configured on your system, other disks may be available for user access. To list
all of the disks common to your name space, use the LIST_MOUNTS command
or the NAMSL_GMT subroutine. DS$AVL cannot return information about
these additional disks.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Use the DYNT subcommand of
BIND to create a dynamic link to DS$AVL. For information about BIND, see
Programmer’s Guide to BIND and EPFs.

R-mode: Not available.

Effective for PRIMOS Revision 21.0 and subsequent revisions.

ﬂ
ﬂ

N\

J

7 DSSENV

DS$ENV

Core Operating System Services

This subroutine returns information about the user’s process.

Usage

DCL DS$SENV ENTRY (FIXED BIN, POINTER, FIXED BIN);

CALL DSS$SENY (user_no, struc_ptr, code);

Parameters

user_no

INPUT. The number of the user for which information is requested. If
user_no is zero, the current user is assumed as the default.

struc_ptr

INPUT —> OUTPUT. A pointer to a structure that will contain the output
information after the call. See the Structure Description section, below.

code
OUTPUT. Standard error code. Possible values are

E$OK No error.

E$BVER version is an illegal value.

E$BPAR An illegal value was specified for user no.

E$NRIT Caller may not access information about another user. See

Discussion, below.

Second Edition 2-63

DSS$SENV

Subroutines Reference lil: Operating System

Structure Description

The parameter struc_ptr points to the structure env_list, shown below:

DCL 1 env list,
2 version FIXED BIN,
2 abbrev_fname CHAR(80) VAR,
2 como_sw BIT ALIGNED,
2 comi_sw BIT ALIGNED,
2 comi unit FIXED BIN,
2 command_level FIXED BIN,
2 erase_char CHAR,
2 kill_char CHAR,
2 default_uts FIXED BIN,
2 current_uts FIXED BIN,
2 auto_log clock FIXED BIN,
2 cpu limit FIXED BIN(31),
2 login limit FIXED BIN(31),
2 quit_inhibits FIXED BIN,
2 group count FIXED BIN,
2 group names (32)CHAR(32)VAR,
2 rid _count FIXED BIN,
2 rid_info(16),
3 remote node name CHAR(32)VAR,
3 remote_user_ id CHAR(32) VAR,
3 remote_project_id CHAR(32)VAR;

version
INPUT. The version number of the structure. Must be set to 1.

abbrev_fname

OUTPUT. Filename of the currently active abbreviation file. If no
abbreviation file is active, a null string is returned.

como_sw
OUTPUT. If a command output file is enabled, this is set to true ('1’b).

comi_sw
OUTPUT. If a command input filc is ecnabled, this is set to true (’1°b).

comi_unit

OUTPUT. The unit number of the current command input file. The value of
this field is undefined if there is no current command input file.

command_level
QUTPUT. User’s current command level.

2-64 Second Edition

J

J

N

)

DS$SENV

Core Operating System Services

erase_char
OUTPUT. User’s current erase character.

kill_char
OUTPUT. User’s current kill character.

default_uts

OUTPUT. Default user time slice in units of 1.024 milliseconds, as a negative
number. Time slices are described in the System Architecture Reference
Guide.

current_uts

OUTPUT. Current user time slice in units of 1.024 milliseconds, as a negative
number.

auto_logo_clock

OUTPUT. Number of minutes remaining until the user is logged out due to
inactivity.

cpu_limit
OUTPUT. CPU time remaining, in milliseconds. If the current process is a
batch job and has a CPU time limit set, the value is nonzero.

login_limit
OUTPUT. Login time remaining, in minutes. This value is nonzero if the
current process is a batch job, and has an elapsed time limit set. This valuc is
also nonzero if the process is in the logout grace period (the process is
processing a LOGOUTS$ on-unit).

quit_inhibits
OUTPUT. The QUIT inhibit count. This is equivalent to the number of times
that BREAKS has been called to defer recognition of terminal quits.

group_count

OUTPUT. The number of ACL groups to which the user belongs. The names
of these groups are contained in group_names.

group_names

OUTPUT. An array containing the names of the ACL groups to which the
user belongs. Only group count elements of group names are set.

rid_count

OUTPUT. The number of added remote IDs. These IDs are listed in rid_info.
See the description of the ADD_REMOTE_ID command, in the PRIMOS
User’s Guide, for more information.

Second Edition 2-65

DSS$ENV

Subroutines Reference Ill: Operating System

2-66 Second Edition

rid_info
OUTPUT. Each element of this array is a structure containing information
about a remote ID, as described in the following fields. Only rid_count
elements of rid_info are set.

rid_info.remote_node_name
OUTPUT. The node name for this remote ID.

rid_info.remote_user_id
OUTPUT. The user ID for this remote ID.

rid_info.remote_project_id

OUTPUT. The project ID for this remote ID. If no project ID has been set,
this field contains the null string.

Discussion

Any process may obtain information about itself. However, only the system
operator, and phantom jobs spawned by the operator, may access information
about another user.

Users of PRIMOS Rev. 21.0 may need to DYNT this subroutine to BIND
successfully. Users of PRIMOS Rev. 22.0 and subsequent revisions should not
have this problem.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

Effective for PRIMOS Revision 21.0 and subsequent revisions.

N\

J

)

DS$UNI

Core Operating System Services

DS$UNI

This subroutine retumns information about file units.

Usage

DCL DS$UNI ENTRY (FIXED BIN, FIXED BIN, FIXED BIN,
CHAR(128)VAR, POINTER, FIXED BIN);

CALL DS$UNI (key, user_no, unit_no, full_path, struc_ptr, code);

Parameters
key
INPUT. Indicates the information to be retumed. Possible values are
K$UNIT Retumns information about a specific unit
K$CURA Returns information about the current attach point

K$HOMA Returns information about the home attach point
K$INIA Returns information about the initial attach point
K$COMO Returns information about the command output file unit

K$NEXT Retumns information about the next open unit whose
pathname contains full_path as a prefix

user_no

INPUT. The number of the user for which information is requested. If
user_no is zero, the current user is assumed as the default.

unit_no

INPUT/OUTPUT. If key is K$UNIT, information is returned about unit
unit_no.

If key is KSNEXT, information is returned about the next unit whose number
is greater than unit_no. See Discussion, below, for a full description.

If key has another value, unit_no is ignored.

Sull_path

If key is KSNEXT, full_path contains the prefix on which to match. See
Discussion, below, for a description.

Second Edition 2-67

file:///fkey

DS$UNI

Subroutines Reference Iji: Operating System

struc_ptr

INPUT —> OUTPUT. A pointer to a structure that will contain the output
information after the call. See Structure Description, below.

code

OUTPUT. Standard error code. Possible values are

E$OK
E$BVER
ES$SBKEY
E$BPAR
ESNRIT
E$BUNT
E$UNOP

E$BFTS

E$SHDN

No error.

version is an illegal value.

An illegal value was specified for key.

An illegal value was specified for user_no.

Caller may not access information about another user.
Invalid value for unit_no.

Either the specified unit was not open or the attach point
was not attached to any directory, or, if key is KINEXT, no
further open units were found.

The pathname is longer than 128 characters and has not
been returned to the field pathname; other fields have been
set.

The disk has been shut down.

Structure Description

The parameter struc_ptr points to a structure, unit_list, of the following format:

DCL 1 wunit list,

version FIXED BIN,

remote unit BIT (1) ALIGNED,
status,

2
2
2

2-68 Second Edition

3

WWwwwwwd Wwwww

modified BIT,
sysuse BIT,
shut_down BIT,
no_close BIT,
disk error BIT,
file type BIT(3),
pen_mode,

not usedl BIT(3),
vmfa_ read BIT,
not used2 BIT,
attach_pt BIT,
write BIT,

read BIT,

rwlock FIXED BIN,

J

J

)

DS$UNI

Core QOperating System Services

2 access_bits,

protect BIT,

delete BIT,

add BIT,

list BIT,

use BIT,

execute BIT,

write BIT,

read BIT,

owner BIT,

3 not used BIT(7),
position FIXED BIN (31),
system name CHAR(32) VAR,
2 pathname CHAR(128) VAR;

WWwWwwwwwww

NN

version
INPUT. The version number of the structure. Must be set to 1.

remote_unit
OUTPUT. If the unit is open on another node, this is set to *1°b.

status

OUTPUT. These 8 bits indicate the file’s status, as described in the following
fields. These ficlds are valid only if the file is open on the local system
(remote_unit is *0’b).

status.modified
OUTPUT. If the file has been modified, this bit is set.

status.sysuse
OUTPUT. If the file is open for system use, this bit is set.

status.shut_down
OUTPUT. If the file’s disk has been shut down, this bit is set.

Status.no_close

OUTPUT. Some open file units may not be closed. Attempts to close them
produce an error code. If the unit may not be closed, this bit is set.

status.disk_error
OUTPUT. This bit is set if there has been a disk error on this file.

status.file_type

OUTPUT. This three-bit field holds a number between 0 and 7, indicating the
file type. Types are defined with the specification of SRCH$S.

Second Edition 2-69

http://status.no

DS$UNI

Subroutines Reference lll: Operating System

open_mode

OUTPUT. These bits indicate access for the open file, as described in the
following fields. These fields are valid only if the file is open on the local
system (remote_unit is '0’b).

open_mode.vmfa_read

OUTPUT. If the file is open for VMFA read (has been opened with the
K$VMR key), this bit is set.

open_mode.attach_pt

OUTPUT. If the unit is an attach point (initial, home, or current), this bit is
set.

open_mode.write
OUTPUT. If writing is permitted, this bit is set.

open_mode.read
OUTPUT. If reading is permitted, this bit is set.

rwlock

OUTPUT. This field indicates the allowed concurrent access to the file or
directory. This field is valid only if the file is open on the local system
(remote_unit is ’0’b). Possible values are

K$DFLT Allow one reader or one writer.
K$EXCL Allow any number of readers, or one writer.
K$UPDT Allow any number of readers and one writer,

K$NONE Allow any number of readers and writers.

access_bits
OUTPUT. These bits indicate the access the user has to the file or directory,
as described in the following fields. These access flags are those defined by
the ACL subsystem. These fields are valid only if the file is open on the local
system (remote_unit is '0’b).
The bits indicate Owner, Protcct, Delete, Add, List, Use, Execute, Write, and
Read access.

position
OUTPUT. The file position. If the file is open for VMFA access, position is
always zero. This field is valid only if the file is open on the local system
(remote_unitis ’0’b).

2-70 Second Edition

J

)

)

DS$UNI

Core Operating System Services

system_name

OUTPUT. Gives the name of the system on which the remote unit is open. If
the file is open on the local system, a null string is returned.

pathname
OUTPUT. If the file is open on a local disk partition, this is the file’s
pathname. If the file is open on a remote disk partition, this field retumns only
the top-level partition name. The open file may be on that partition, or may be
on a lower-level partition under the top-level partition. If the fileisina
root-directed portal, no partition name is returned.

Discussion

DS$UNI returns information about the user’s file units. If the Name Server is in
use, this subroutine can retumn file unit information from any disk common to the
user’s name space. DS$UNI returns the same information from remote disks
configured on your system and remote disks accessed through the Name Server.

If key is KSNEXT, information is returned for the next locally opened unit
greater than unit_no whose pathname contains the string full_path (which may
be null) as a prefix. On a successful return, unit_no is updated to indicate the
unit number for which information is being retumed. To scan all the user’s units,
the programmer should set unit no initially to —1 and call DS$UNI, with key
K$NEXT, in a loop that terminates on return of error code ESUNOP.

This routine includes the function of the existing routines FINFO$ and GPATHS.
However, FINFO$ and GPATHS$ will continue to be fully supported.

Only the system operator, and phantom jobs spawned by the operator, may
access information about another user.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

Effective for PRIMOS Revision 21.0 and subsequent revisions.

Second Edition 2-71

GSMETR

Subroutines Reference Ill: Operating System

GSMETR

2-72 Second Edition

GS$METR returns system metering information, such as that returned by the
USAGE command.

Usage

DCL GSMETR ENTRY (FIXED BIN(15), PTR OPTIONS(SHORT),
FIXED BIN(15), FIXED BIN(15),
FIXED BIN(15), FIXED BIN(15));

CALL GSMETR (meter_key+user_key, bufptr, bufsize, user_no, version,
code);

Parameters

meter_key

INPUT. A code that specifies the type of metering information to be returned.

Possible values are

General system meters

File system meters

Interrupt process meters

System meters for an individual user
Meters for memory use

Meters for disk use

Meters for ROAM use

00 3 O W A W N

Scheduler information meters

For Rev. 23.0 and later revisions, if you specify a meter_key value of 4, you
may also specify a user _key value. If you specify any other meter key value,
the user_key value is ignored. Using the user_key subparameter and the
user_no parameter, you can define a sequential search of users. user_no
specilics the starting user number and user key specifies the type of users to
search.

J

GSMETR

r Core Operating System Services

The user_key values are as follows:

0 No user searching; specified user only
1024 Searches for the next existing user (of any type)
2048 Searches for the next existing terminal-user type
3072 Searches for the next existing phantom-user type
4096 Searches for the next existing kernel-user type

Specify a meter_key of 4, a plus sign, and one of these user_key values. Do
not include blanks or more than one user_key value. If you do not specify a
key value, GSMETR works exactly as it did prior to Rev. 23.0: it locates the
user number specified in user no.

bufptr

INPUT —> OUTPUT. Pointer to an arca in memory that will contain metering
’“ information for the meter_key chosen. The Structure Description section
includes the format of this structure.

bufsize
INPUT. Maximum size of the caller’s buffer.

user_no

INPUT. User number. This value is used only if the value of meter key is 4.
r You can either use this field to specify an individual user by user number or to
initiate a sequential search for a user number.

To request a specific user number, set meter_key to 4. Do not specify a
user_key subparameter. Specify the user number in this parameter. You can
specify the current user by setting user_no to 0.

To request a search for a user number, you must be running PRIMOS Rev.
23.0. Set meter_key to 4 and specify a user_key subparameter. Specify the
starting user number for a sequential search in this parameter. GSMETR

r returns information on the first user number equal to or greater than the
number you specified that satisfies the search criteria.

version

INPUT. The version number for the structure pointed to by bufptr. Specify
the version number that corresponds to the revision of PRIMOS that you are
using. Possible values are

5 Rev. 21.0
6 Rev. 22.0
7 Rev. 22.1
8 Rev. 23.0

Second Edition 2-73

3

GSMETR

Subroutines Reference IlI: Operating System

code

OUTPUT. Standard error code. Possible values are

E$OK

E$BPAR

E$BFTS

ESUINF

No error.

Invalid parameter. Occurs when an invalid meter_key,
user_key, user_no, or version is supplied. A user_no is
invalid if it is not within the range of existing user
numbers.

bufsize is not large enough to hold the information
requested.

Search for user number unsuccessful. There is no existing
user with a user number equal to or greater than user_no
that satisfies the user type restriction specified by
user_key.

Structure Description

The parameter bufptr points to one of the structures shown below, depending on
the meter_key specified.

General System Meters: When meter_key is 1, the parameter bufptr points
to the structure meter_sys. Specify 13 for bufsize and declare the following
structure in your program:

DCL 1

version

meter_sys,

NN RONNDNDNDDND

version FIXED BIN(15),
unused field FIXED BIN(15),
cptot FIXED BIN(31),

iotot FIXED BIN(31),

gclock FIXED BIN(31),

iocent FIXED BIN(31),

nusr FIXED BIN(1lS5),

cptick FIXED BIN(15),
clrate FIXED BIN(15):,

OUTPUT. Version number of the structure. Returns the value specified for
the version input parameter (see above).

unused_field
OUTPUT. Reserved.

2-74 Second Edition

J

J

)

GSMETR

Core Operating System Services

cptot

OUTPUT. CPU time used, in CPU ticks, since system boot. The length of a
CPU tick is returned in the cptick field of this structure. (Note that a CPU
tick is not the same as a real time clock tick.) To compute the CPU time
used in milliseconds, multiply the value of cptot by the value of cptick, then
divide by 1000.

iotot

OUTPUT. I/0 time used, in real time clock ticks, since system boot. The
length of a real time clock tick is returned in the clrate field of this structure.
(Note that a real time clock tick is not the same as a CPU tick.) To compute
the I/O time used in milliseconds, multiply the value of iotot by 1000, then
divide by the value of clrate.

gclock

OUTPUT. Elapsed time, in real time clock ticks, since system boot. The
length of a real time clock tick is returned in the clrate field of this structure.
(Note that a real time clock tick is not the same as a CPU tick.) To compute
this elapsed time used in milliseconds, multiply the value of gclock by 1000,
then divide by the value of clrate.

iocnt

OUTPUT. Number of disk I/O operations performed since system boot.

nusr

OUTPUT. Number of users configured on the system.

cptick

OUTPUT. Length of a CPU tick. cprick is a time measurement, expressed in
microseconds per CPU tick. The standard value is 1024 microseconds per
CPU tick. (Note that a CPU tick is not the same as a real time clock tick.)

clrate

OUTPUT. Length of a real time clock tick, expressed in real time clock ticks
per second. The value of this field is CPU-dependent. (Note that a real time
clock tick is not the same as a CPU tick.)

Second Edition 2-75

G$METR

Subroutines Reference ill: Operating System J

“
File System Meters: When meter key is 2, the parameter bufptr points to
the structure meter_fs. Specify 18 for bufsize and declare the following structure
in your program:

DCL 1 meter fs,
2 version FIXED BIN(15),
2 unused_field FIXED BIN(15),
2 pg faults FIXED BIN(31),
2 locate,
3 misses FIXED BIN(31),
3 found FIXED BIN(31),
3 same FIXED BIN(31),
3 used FIXED BIN(31l),

2 Dblkent,
3 read cnt FIXED BIN(31), 4\
3 write_cnt FIXED BIN(31),

3 awrite_cnt FIXED BIN(31);

version

OUTPUT. Version number of the structure. Returns the value specified for
the version input parameter (see above).

unused_field
OUTPUT. Reserved.

pg_faults
OUTPUT. Number of page faults since system boot.

locate
OUTPUT. A group of fields containing information about locate meters.

locate.misses \

OUTPUT. Number of times since system boot that any process needed a disk
record that was not in a Locate buffer.

locate.found

OUTPUT. Number of times since system boot that a disk record needed was
in a Locate buffer.

locate.same

OUTPUT. Number of times since system boot that a process needed a
physical record that it already owned.

2-76 Second Edition ‘-\

3

GSMETR

Core Operating System Services

locate.used
OQUTPUT. Number of Locate buffers in use.

blkcnt

OUTPUT. A group of fields containing read/write information about ROAM
direct I/O since system boot.

blkcnt.read_cnt
OUTPUT. Number of read operations performed.

blkcnt.write_cnt
OUTPUT. Number of write operations performed.

blkcnt.awrite_cnt
OUTPUT. Number of asynchronous write operations performed.

interrupt Process Meters: If meter key is 3, the parameter bufptr points to
the structure meter_int. GSMETR uses the version of meter_int that corresponds
to the version input parameter value. At Rev. 21.0, specify 62 for bufsize and
declare the following structure in your program:

DCL 1 meter_int,
2 wversion FIXED BIN(15),
2 unused field FIXED BIN(15),
2 cpused(30) FIXED BIN(31):

At Rev. 22.0 and subsequent revisions, specify 64 for bufsize and declare the
following structure in your program:

DCL 1 meter_int,
2 wversion FIXED BIN(15),
2 unused field FIXED BIN(1l5),
2 cpused(31l) FIXED BIN(31l):

version

OUTPUT. Version number of the structure. Returns the value specified for
the version input parameter (se¢ above).

unused_field
OUTPUT. Reserved.

cpused

OUTPUT. An array giving the amount of CPU time used sincc system boot by
each interrupt process, such as the clock process, the AMLC driver process,

Second Edition 2-77

GSMETR

Subroutines Reference 1li; Operating System

2-78 Second Edition

and the disk processes, as shown below. Rev. 22.0 adds entry 31 (total CPU
time used by other interrupt processes) to the cpused array.

Index in the
cpused Array

1

O 00 N N W R W

[I S T S N S I S T O T S = S R S A i
[« R N - = - - - R R - W & S - S N L =]

Description

Debugger process
Backstop process
Second backstop process
Clock process

Front stop process
SMLC process

AMLC process

MPC process

MPC process
MPC4/Versatec process
MPC4/Versatec process
MPC4/Versatec process
RINGNET™ process
RINGNET process
First disk process
Second disk process
Third disk process
Fourth disk process
Fifth disk process

Sixth disk process
Seventh disk process
Eighth disk process
AMLC process

SMLC process

IPQ process

IPQ process

“N
N\

3

)

G$METR

Core Operating System Services

Index in the
cpused Array Description
27 Maintenance Processor process
28 AMLC process
29 AMLC process
30 NTS process
31 Rev. 22.0 and subsequent revisions: Total CPU time

used by other interrupt processes (usually 0)

Per User System Meters: When meter key is 4, the parameter bufptr
points to the structure meter_user.

For revisions earlier than Rev. 22.1, specify 43 for bufsize, specify the
appropriate value for version, and declare the following structure in your
program:

DCL 1 meter user,

version FIXED BIN(15),

user_ type FIXED BIN(15),

log date FIXED BIN(15),
log_time FIXED BIN(15),

log nam CHAR(32),

projid CHAR(32),

cpu_used FIXED BIN(31),

io used FIXED BIN(31),
unused_fieldl FIXED BIN(31),
unused_field2 FIXED BIN(15);

NNDNMDNDNDNNOMDNDNNONDND

At Rev. 22.1, specify 67 for bufsize, specify 7 for version, and declare the
following structure in your program;

DCL 1 meter user,

version FIXED BIN(15),
user_type FIXED BIN(15),

log date FIXED BIN(15),

log time FIXED BIN(15),
log_nam CHAR(32),

projid CHAR(32),

cpu_used FIXED BIN(31),
io_used FIXED BIN(31),
unused fieldl FIXED BIN(31),
unused_field2 FIXED BIN(15),
rdcn FIXED BIN(31),
unused_field3 FIXED BIN(31),
wrcn FIXED BIN(31),

NNMNNOMNDDNDDDDNONOONDND

Second Edition 2-79

G$METR

Subroutines Reference Ili: Operating System

reservedl FIXED BIN(31),
reserved2 FIXED BIN(31),
unused field4 FIXED BIN(31),
reserved3 FIXED BIN(31),
reserved4 FIXED BIN(31),

lord FIXED BIN(31),

lowrpf FIXED BIN(31),

lowrca FIXED BIN(31),
lowpffor FIXED BIN(31);

DN NDDDDNNDN

At Rev. 23.0 and subsequent revisions, specify 70 for bufsize, specify 8 for
version, and declare the following structure in your program;

DCL 1 meter_user,
2 wversion FIXED BIN(15),

2 user type FIXED BIN(15),

2 log date FIXED BIN(15),

2 log time FIXED BIN(15),

2 log nam CHAR(32),

2 projid CHAR(32),

2 cpu used FIXED BIN(31),

2 ilo_used FIXED BIN(31),

2 unused fieldl FIXED BIN(31),
2 unused field2 FIXED BIN(15),
2 rden FIXED BIN(31),

2 unused field3 FIXED BIN(31},
2 wrcen FIXED BIN(31),

2 reservedl FIXED BIN(31l),

2 reserved2 FIXED BIN(31),

2 unused _field4 FIXED BIN(31),
2 reserved3 FIXED BIN(31),

2 reservedd4d FIXED BIN(31),

2 lord FIXED BIN(31l),

2 1lowrpf FIXED BIN(31l),

2 lowrca FIXED BIN(31),

2 lowpffor FIXED BIN(31),

2 user num FIXED BIN(15),

2 user _pri FIXED BIN(15),

2 majorts FIXED BIN(15);

The contents of the fields of the meter user structure are described below.
version

OUTPUT. Version number of the structure. Retumns the value specified for
the version input parameter (see above).

2-80 Second Edition

J

GSMETR

Core Operating System Services

user_type

OUTPUT. Type of user. The UTYPE$ description in Chapter 2 of this
volume contains a list of possible user types. For local users, the structure
contains the information below; for remote users, only the projid field is
significant.

log _date

OUTPUT. Date of login, in file-system date format. This field corresponds to
the year, month, and day fields of the file-system date format structure
described in Appendix C. When combined, the log_date and log_time fields
comprise a complete file-system date format, as described in Appendix C.

log _time

OUTPUT. Time of login, expressed in total quadseconds since midnight.
This field corresponds to the quadseconds field of the file-system date format
structure described in Appendix C.

log_nam
OUTPUT. Login ID in the process descriptor block.

projid
OUTPUT. User’s project ID; this contains the string REMOTE if the user is

logged through this system to get to another system, or is a remote user on this
system.

cpu_used

OUTPUT. Amount of CPU time used since login, expressed in units of 1.024
milliseconds (= 1,024 microseconds).

io_used

OUTPUT. Amount of disk I/O time used since login, expressed in units of real
time clock ticks. The clock tick rate for the given processor is returned by
GS$METR in the clrate entry of the General System Meter structure. (See
above.)

unused_fieldl
OUTPUT. Reserved for future use. Currently always returns a value of zero.

unused_field2
OUTPUT. Reserved for future use. Currently always returns a value of zero.

rdcn

OUTPUT. The number of synchronous reads this process has performed since
login. This field is used only for Rev. 22.1 and subsequent revisions.

Second Edition 2-81

GSMETR

Subroutines Reference Ill: Operating System

2-82 Second Edition

unused_field3
OUTPUT. Reserved for future use. Currently always returns a value of zero.

wrcn

OUTPUT. The number of synchronous writes this process has performed
since login. This field is used only for Rev. 22.1 and subsequent revisions.

reservedl
OUTPUT. Reserved for internal use.

reserved?2
OUTPUT. Reserved for internal use.

unused_field4
OUTPUT. Reserved for future use. Currently always returns a value of zero.

reserved3
OUTPUT. Reserved for internal use.

reserved4
OUTPUT. Reserved for internal use.

lord

OUTPUT. The number of reads from disk to a Locate buffer that this process
has performed since login. When this meter is incremented, the rdcn meter is
also incremented. This field is used only for Rev. 22.1 and subsequent
revisions.

lowrpf

OUTPUT. The number of times that this process has, since login, performed a
synchronous write to disk of a Locate buffer. A user process performs a
synchronous write to disk under two circumstances: 1) when it makes a read
or write request for a disk record that is not currently in the Locate buffer pool
when no free nonmodified buffers are available, or 2) when it force writes a
Locate buffer to disk. When the first circumstance occurs, the process writes
the buffer in order to clear space for its own data, and in so doing is charged
with performing a write. The user process is then free to acquire this buffer.
In addition, the Locate flush process writes modified buffers to disk directly.
When this meter is incremented, the wrcn meter is also incremented. This
field is used only for Rev. 22.1 and subsequent revisions.

lowrca
OUTPUT. The number of writes of Locate buffers to disk that this process has
caused since login. The first process to modify a Locate buffer is charged
with causing the write of that buffer to disk, even though another process such

J)

N\
N\

)

)

GSMETR

Core Operating System Services

as the Locate flush process may perform the write of that buffer to disk. This
field is used only for Rev. 22.1 and subsequent revisions.

lowpffor
OUTPUT. The number of forced writes to Locate buffers done by this
process. When this meter is incremented the lowrpf meter is also
incremented. This field is used only for Rev. 22.1 and subsequent revisions.

user_num

OUTPUT. Current user number. This is the user number of the first logged-in
user retumed by the sequential search established by the user no parameter.

If the specified user number was invalid, or the search failed to locate a valid
user number, GSMETR sets this field to zero and returns an error code to the
code parameter. This field is used only for Rev. 23.0 and subsequent revisions.

user_pri

OUTPUT. The user’s priority. Possible values include O through 4, —1 (idle
queue), and -2 (suspend queue). This field is used only for Rev. 23.0 and
subsequent revisions.

majorts

OUTPUT. The length of the user’s major time slice, in milliseconds. You can
set the length of a major time slice by using the CHAP command. This field
is used only for Rev. 23.0 and subsequent revisions.

Memory Meters: When meter key is S, the parameter bufptr points to the
structure meter_mem. The three possible forms of the meter_mem structure are
described below. The size of the segments, physical_mem, and wired_mem
arrays in each structure indicates the number of users that can be configured.

AtRev. 21.0, specify 771 for bufsize, specify S for version, and declare the
following structure in your program:

DCL 1 meter_mem,

version FIXED BIN(15),

max_segs FIXED BIN(15),
total_segs FIXED BIN(15),
max_pages FIXED BIN(15),

total pages FIXED BIN(15),

wired pages FIXED BIN(1S5),
segments (255) FIXED BIN(15),
physical mem(255) FIXED BIN(15),
wired mem(255) FIXED BIN(15):;

NN NN

AtRev. 22.0, specify 4964 for bufsize, specify 6 for version, and declare the
following structure in your program.

Second Edition 2-83

GSMETR

Subroutines Reference Ill: Operating System

DCL 1 meter mem,

version FIXED BIN(15),

max segs FIXED BIN(15),

total segs FIXED BIN(15),
max_pages FIXED BIN(31),

total pages FIXED BIN(31),

wired pages FIXED BIN(31),
segments (991) FIXED BIN(15),
physical mem(991) FIXED BIN(31),
wired mem(991) FIXED BIN(31):;

NN DNDNDNDNDNDDDNDNDDNDN

At Rev. 22.1 and subsequent revisions, specify 4984 for bufsize, specify the
appropriate version, and declare the following structure in your program:

DCL 1 meter mem BASED,

version FIXED BIN(15),

max_ segs FIXED BIN(15),

total segs FIXED BIN(15),
max_pages FIXED BIN(31),
total_pages FIXED BIN(31),
wired pages FIXED BIN(31),
segments (991) FIXED BIN(15),
physical mem(991) FIXED BIN(31),
wired mem(991) FIXED BIN(31),
init_pgrecs(8) FIXED BIN(1S5),
cur_pgrecs(8) FIXED BIN(15),
cur_vmfa FIXED BIN(15),

tot _vmfa FIXED BIN(15),
iopfcn FIXED BIN(15) ;

D NN NNMNNDNDDNDDNDNDDNDDND

The contents of the fields of the meter_user structure are described below. Use
fields init_pgrecs through iopfcn only in the 22.1 structure. Use the other fields
in all forms of the structure.

version

OUTPUT. Version number of the structure. Returns the value specified for
the version input parameter (see above).

max_segs
OUTPUT. Maximum number of segments in the system.

total_segs
OUTPUT. Total segments in use.

2-84 Second Edition

J

G$METR

Core Operating System Services

max_pages
OUTPUT. Maximum number of physical pages in the system. Note that this
field is smaller for Version 5 than it is for Version 6 and subsequent versions.
(See the declarations above.) If you specify Version 5 for a system with more
memory than can be expressed in 16 bits, GSMETR returns a value of O to
max_pages.

total_pages
OUTPUT. Total pages in use.

wired_pages
OUTPUT. Number of wired pages in the system.

segments

OUTPUT. An array, indexed by user number. Each element gives the number
of segments allocated to a user. The size of this array is 255 for Version 5 and
991 for Version 6 and subsequent versions.

physical_mem

OUTPUT. An array, indexed by user number. Each element gives the number
of pages allocated to each user. The size of this array is 255 for Version 5 and
991 for Version 6 and subsequent versions.

wired_mem

OUTPUT. An array, indexed by user number. Each element gives the number
of wired pages allocated to each user. The size of this array is 255 for Version
5 and 991 for Version 6 and subsequent versions.

init_pgrecs
OUTPUT. The initial number of paging records available, divided by eight.
This field is used only for Version 7 (Rev. 22.1) and subsequent versions.

cur_pgrecs

OUTPUT. The number of currently available paging records, divided by
eight. This field is used only for Version 7 (Rev. 22.1) and subsequent
versions,

cur_vmfa

OUTPUT. Number of VMFA segments currently in use. This field is used
only for Version 7 (Rev. 22.1) and subsequent versions.

tot_vmfa

OUTPUT. Total number of VMFA segments configured for this system. This
field is used only for Version 7 (Rev. 22.1) and subsequent versions.

Second Edition 2-85

GSMETR

N\

Subroutines Reference Ill: Operating System

N

iopfcn
OUTPUT. Total I/O caused by page faults. This field is used only for Version
7 (Rev. 22.1) and subsequent versions,

Note If you use a Version 5 meter_mem structure on a system using Rev. 22.0 or a later
revision, 0 is returned to max_pages, total_pages, and wired_pages when the amount of
memory overflows these fields (> 65535 pages). If you use a Version 5 meter mem
structure on a system using Rev. 22.0 or a later revision with more than 255 users
configured, information on users numbered 1 through 255 only is returned to segments,
physical mem, and wired_mem. The number of configured users is returned to
meter_sys.nusr.

Disk Meters: When meter key is 6, the parameter bufptr points to the
structure meter _disk. At Rev 20.2, specify 74 for bufsize and declare the »\
following structure in your program: -

DCL 1 meter_disk,

version FIXED BIN(15),

unused_field FIXED BIN(15),

q_waits FIXED BIN(31),

dma overruns FIXED BIN(31l),

hangs FIXED BIN(31),

io_time(0:3, 0:3) FIXED BIN(31), \
io cnt(0:3, 0:3) FIXED BIN(31),

async_write cnt FIXED BIN(31);

DN DNDNDNDNDNDDN

At Rev 21.0 and subsequent revisions, specify 266 for bufsize and declare the
following structure in your program:

DCL 1 meter disk,

version FIXED BIN(15),

unused_field FIXED BIN(15), N\
q_waits FIXED BIN(31),

dma_overruns FIXED BIN(31),

hangs FIXED BIN(31),

io time(0:7, 0:7) FIXED BIN(31),

io cnt(0:7, 0:7) FIXED BIN(31),

async_write cnt FIXED BIN(31);

NN DNNDNDNON

version

OUTPUT. Version number of the structure. Returns the value specified for
the version input parameter (see above).

unused_field
OUTPUT. Reserved.

2-86 Second Edition “N

G$METR

Core Operating System Services

q_waits

OUTPUT. Number of times since system boot that a process had to wait for
allocation of a disk request block.

dma_overruns

OUTPUT. Number of disk operations since system boot that resulted in DMA
overrun errors.

hangs

OUTPUT. Number of operations since system boot that caused a disk
controller to hang and time out.

io_time
QUTPUT. Amount of I/O, in seconds, that each device has used since it was
initialized. This field is an eight-element, two-dimensional array. The first
index is the controller number, and the second index is the device number.

io_cnt

OUTPUT. Number of I/O operations performed by each device since system
boot. This field is an eight-element, two-dimensional array. The first index is
the controller number, and the second index is the device number.

async_write_cnt

OUTPUT. Number of asynchronous ROAM write operations performed since
ROAM initialization.

Second Edition 2-87

GSMETR

Subroutines Reference Ill: Operating System

ROAM Meters: When meter_key is 7, the parameter bufptr points to the
structure meter_roam. Specify 50 for bufsize and declare the following structure
in your program:

DCL 1 meter_roam,
2 wversion FIXED BIN(1l5),
2 unused field FIXED BIN(15),
2 read_write,
reads FIXED BIN(31l),
writes FIXED BIN(31),
retrieve trans FIXED BIN(31),
update trans FIXED BIN(31),
non_trans FIXED BIN(31),
windowed FIXED BIN(31),
found used FIXED BIN(31),
found_free FIXED BIN(31),
disk_reads FIXED BIN(31),
copies FIXED BIN(31l),
bef image_addrs FIXED BIN(31),
2 release,
3 calls FIXED BIN(31),
3 writes FIXED BIN(31),
2 allocate,
3 calls FIXED BIN(31l),
3 success FIXED BIN(31),
3 dynamic FIXED BIN(31),
2 free_calls,
3 calls FIXED BIN(31l),
3 others FIXED BIN(31),
2 before_image,
3 calls FIXED BIN(31),
3 converts FIXED BIN(31),
purge files FIXED BIN(31),
check_calls FIXED BIN(31),
2 transition,
3 trans_in FIXED BIN(31),
3 trans_out FIXED BIN(31);

WWwwwwwwwwww

NN

version

OUTPUT. Version number of the structure. Returns the value specified for
the version input parameter (see above).

unused_field
OUTPUT. Reserved.

read_write

OUTPUT. A group of fields containing read/write statistics since ROAM
initialization.

2-88 Second Edition

J

GSMETR

Core Qperating System Services

read_write.reads
OUTPUT. Number of read requests.

read_write.writes
OUTPUT. Number of write requests.

read _write.retrieve_trans
OUTPUT. Number of retrieval transactional accesses.

read_write.update_trans
OUTPUT. Number of update transactional accesses.

read_write.non_trans
OUTPUT. Number of nontransactional accesses.

read_write.windowed
OUTPUT. Number of people currently looking at buffer.

read_write.found_used
OUTPUT. Number of times buffer found in use.

read_write.found_free
OUTPUT. Number of times buffer found on free chain.

read_write.disk_reads
OUTPUT. Number of disk reads required to get buffer.

read_write.copies
OUTPUT. Number of times buffer was copied from another buffer.

read write.bef image_addrs
OUTPUT. Number of times a record’s before image was read.

release

OUTPUT. A group of fields containing release statistics since ROAM
initialization.

release.calls
OUTPUT. Number of release calls.

release.writes
OUTPUT. Number of release calls requiring write operations.

Second Edition

2-89

GSMETR

Subroutines Reference Ill: Operating System

allocate
OUTPUT. A group of fields containing allocation statistics since ROAM
initialization.

allocate.calls
OUTPUT. Number of allocate calls.

allocate.success
OUTPUT. Number of times data was in cache.

allocate.dynamic
OUTPUT. Number of dynamic allocations.

Jfree_calls
OUTPUT. A group of fields containing free call statistics since ROAM
initialization.

Jfree_calls.calls
OUTPUT. Number of free calls.

Jree_calls.others
OUTPUT. Number of free calls for other users.

before_image
OUTPUT. A group of fields containing before-image statistics since ROAM
initialization.

before_image.calls
OUTPUT. Number of before-image calls.

before_image.converts
OUTPUT. Number of times a page was converted to the before-image state.

purge_files
OUTPUT. Number of file purges.

check_calls
OUTPUT. Number of check calls.

transition

OUTPUT. A group of fields containing buffer transition information since
ROAM initialization.

2-90 Second Edition

N

)

)

GSMETR

Core Operating System Services

transition.trans_in
OUTPUT. Number of incoming read operations.

transition.trans_out
OUTPUT. Number of outgoing write operations.

Scheduler Information Meters: When meter key is 8, the parameter bufptr
points to the structure meter_sch. meter_sch can be used only with Rev. 23.0
and subsequent PRIMOS revisions. Specify 103 for bufsize and declare the
following structure in your program:

DCL 1 meter sch,

version FIXED BIN(15),

mode FIXED BIN(15),

reserved FIXED BIN(15),

queue_ratios (1:3) FIXED BIN(15),

level ratios (1:5) FIXED BIN(15),
quota_calc_cnt FIXED BIN(31),

high queue ntfy cnt (1:5) FIXED BIN(31),
elig queue ntfy cnt (1:5) FIXED BIN(31),
low_queue_ntfy cnt (1:5) FIXED BIN(31),
high queue arrv_cnt (1:5) FIXED BIN(31),
elig queue_arrv_cnt (1:5) FIXED BIN(31),
low_queue_arrv_cnt (1:5) FIXED BIN(31),
high queue jobs_cnt (1:5) FIXED BIN(31),
elig queue jobs cnt (1:5) FIXED BIN(31),
low_queue_ jobs_cnt (1:5) FIXED BIN(31);

RDNNPODNPNNRNONNDMNDNDNDNDNDNND

version

OUTPUT. Version number of the structure. Returns the value specified for
the version input parameter (see above).

mode
OUTPUT. Mode of the scheduler.

Returns 0 if the Set_Scheduler _Attributes (SSA) command has either
not been invoked since coldstart or was last invoked with no options.

Retums 2 if the Set_Scheduler _Attributes (SSA) command was last
invoked with the —-SJOB, —QRAT, -PBIAS, or -PRAT options.

The scheduler mode can only be set by the System Administrator, or at the
system console. The Set_Scheduler_Attributes command is described in the
Operator’s Guide to System Commands.

reserved
OUTPUT. Reserved for internal use.

Second Edition 2-91

GSMETR

Subroutines Reference IlI: Operating System

2-92 Second Edition

queue_ratios

OUTPUT. Retumns the CPU ratios for the high-priority, eligibility, and
low-priority queues (in that order). The defaultis—1,-1, 1. A value of -1
represents infinite service; that is, all queued items are taken from that queue
before checking the next queue.

level_ratios

OUTPUT. Returns the CPU ratios for the priority levels. Lists from highest
priority (level 4) to lowest priority (level 0). The default is 16, 8, 4, 2, 1.

quota_calc_cnt

OUTPUT. Number of times that the quota has been calculated since coldstart,
Periodically, PRIMOS automatically calculates the quota for queues that do
not have infinite service by using the values shown in queue ratios and

level ratios.

high_queue_ntfy_cnt

OUTPUT. Number of processes scheduled off of the high-priority queue
since coldstart. When queue_ratios indicates non-infinite service for the
high-priority queue, this count is subdivided into each of its priority levels.
When queue_ratios indicates infinite service, each process scheduled off of
this queue increments the counter for the highest priority level, regardless of
the actual priority level of the process. If the queue ratio has been changed
since coldstart, the total number shown in this field may not be very useful;
what is often more useful is to call GSMETR twice, then compare the two
values for this field.

elig_queue_ntfy_cnt

OUTPUT. Number of processes scheduled off of the eligibility queue since
coldstart. When queue_ratios indicates non-infinite service for the eligibility
queue, this count is subdivided into each of its priority levels. When
queue_ratios indicates infinite service, each process scheduled off of this
queue increments the counter for the highest priority level, regardless of the
actual priority level of the process. If the queue ratio has been changed since
coldstart, the total number shown in this field may not be very useful; what is
often more uscful is to run GSMETR twice, then compare the two values for
this field.

low_queue_ntfy_cnt

OUTPUT. Number of processes scheduled off of the low-priority queue since
coldstart. This notice count is subdivided into each of its priority levels.

high_queue_arrv_cnt

OUTPUT. Total number of processes arrived at the high-priority queue since
coldstart. When queue_ratios indicates non-infinite service for the

3

GSMETR

Core Operating System Services

high-priority queue, this count is subdivided into each of its priority levels.
When queue_ratios indicates infinite service, the highest priority level
contains the total count. If the queue ratio has been changed since coldstart,
the total number shown in this field may not be very useful; what is often
more useful is to call GSMETR twice, then compare the two values for this
ficld.

elig_queue_arrv_cnt
OUTPUT. Total number of processes arrived at the eligibility queue since
coldstart. When queue_ratios indicates non-infinite service for the eligibility
queue, this count is subdivided into each of its priority levels. When
queue_ratios indicates infinite service, the highest priority level contains the
total count. If the queue ratio has been changed since coldstart, the total
number shown in this field may not be very useful; what is often more useful
is to call GSMETR twice, then compare the two values for this field.

low_queue_arrv_cnt

OUTPUT. Total number of processes arrived at the low-priority queue since
coldstart. This count is subdivided into each of its priority levels.

high_queue_jobs_cnt
OUTPUT. Total number (since coldstart) of processes observed waiting on
the high-priority queue. Each time PRIMOS calculates the queue quotas, it
adds the number of processes observed on this queue to the total of previous
observations since coldstart. When queue_ratios indicates infinite service,
PRIMOS does not observe processes waiting on this queue. When
queue_ratios indicates non-infinite service, this count is subdivided into each
of its priority levels. If the queue ratio has been changed since coldstart, the
total number shown in this field may not be very useful; what is often more
useful is to call GSMETR twice, then compare the two values for this field.

elig_queue_jobs_cnt

OUTPUT. Total number (since coldstart) of processes obscrved waiting on
the eligibility qucue. Each time PRIMOS calculates the queue quotas, it
adds the number of processes observed on this queue to the total of previous
observations since coldstart. When queue_ratios indicates infinite service,
PRIMOS doces not observe processes waiting on this queue. When
queue_ratios indicates non-infinite service, this count is subdivided into each
of its priority levels. If the queue ratio has been changed since coldstart, the
total number shown in this field may not be very useful; what is often more
uscful is to call GSMETR twice, then compare the two values for this field.

low_queue_jobs_cnt

OUTPUT. Total number (since coldstart) of processes observed waiting on
the low-priority queue. Each time PRIMOS calculates the queue quotas, it
adds the number of processes observed on this queue to the total of previous

Second Edition 2-93

GSMETR

Subroutines Reference lll: Operating System

2-94 Second Edition

observations since coldstart. This count is subdivided into each of its priority
levels.

Discussion

G$METR can return metering information about the system as a whole, the file
system, interrupt processes, memory, disks, ROAM (Recovery-Oriented Access
Method), the scheduler, or individual users. Each category of information
requires a separate call to GSMETR. The size and structure of the caller’s retun
buffer depends on the meter_key chosen. Process aborts are inhibited during the
fetch to ensure consistency of the information returned.

For some G$METR meters (for example, meter sch) the recommended practice
is to run GSMETR twice during a period of known duration and unchanged
scheduler parameters, then compare the two resulting values for each meter
field.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

Effective for PRIMOS Revision 21.0 and subsequent revisions.

4)

N

)

User Terminal I/0O

This chapter describes procedures that perform input and output on the user’s
main terminal, as well as procedures for controlling terminal interaction.

The first part of this chapter describes routines used for handling input. For
interactive users, input is from the user terminal. By issuing the COMINPUT

r command (see the PRIMOS User’s Guide) or calling the COMISS procedure,
you can switch input so that it originates from a file. See below for more
information on the way the system uses a command input file.

The second part of this chapter describes routines used for handling output.
Output is normally to the user terminal, but if the user issues the COMOUTPUT
command (see the PRIMOS User’s Guide) or calls the COMO$$ procedure,
output goes to a file, either exclusively or in addition to the terminal. This
section includes a number of routines that are used to build, piece by piece, a line

r of formatted output. This technique is now obsolete; use IOAS$, which is
described in this chapter, to perform free-format output.

The third part of this chapter describes routines used to control user terminal I/O.

r Second Edition 3-1

Subroutines Reference lll: Operating System

Command Input Files

There are four situations concerning input from the user terminal:

If an interactive user starts a program from the terminal, routines accepting
input read from the terminal.

If a command input file is in control and starts a program, most routines
accepting input read from the command input file. However, some routines
read from the terminal when a command file is in control, giving the
programmer the option of reading from the terminal under all circum-
stances. The individual routine descriptions describe which routines offer
this choice. The person writing the command input file must know that the
program will be requesting input. If the program attempts to read past the
end of the file, the COMI_EOFS$ condition is raised.

If a CPL program is in control and executes a program, the result depends
on whether or not a command input file executed the CPL program. If a
command input file did execute the CPL program, input is read from the
file as in the second case above. If no command input file is in control,
input is always taken from the terminal.

If a CPL program is in control and issues a &DATA command, the lines in
the &DATA block are copied to a temporary file, which becomes a
command input file. As in the second example, the programmer retains the
option of reading from the terminal by choosing the appropriate routines. If
the program reads past the end of the temporary command input file, the
CPL interpreter catches the COMI_EOF$ condition, issues an appropriate
error message, and stops running the CPL file. This event can be avoided
by putting the &TTY directive at the end of the &DATA block. The &TTY
directive instructs CPL to switch back to the original source of data.

In summary, the program can pick up terminal input in the following ways:

When run directly by an interactive user
When run from a CPL program

When run from a $DATA group within a CPL program, if the $DATA
group has a $TTY directive

By using one of the routincs that pick up only terminal input

The program can pick up input from a command input file in the following
ways:

e When run from a command input file

e When run from a $DATA group inside a CPL program

3-2 Second Edition

))

)

r
-

N

User Terminal VO

Phantom Input and Output

Assigned Lines

In this section, information about phantom processes also applies to batch jobs.
Phantom processes have no controlling terminal. Attempts to read input from a
terminal fail, so phantom processes must read their input from a command input
file. Output is discarded unless the user has activated a command output file
using the COMOUTPUT command or the COMO$$ routine.

A phantom process may attempt to read from the nonexistent terminal. It might
call one of the routines that reads unconditionally from the terminal. It might
attempt to read a command input file when no command input file is open. In
either case, PRIMOS prints an error message on the supervisor terminal, and
logs out the phantom process.

This volume only describes character input and output on the user login terminal.
Subroutines Reference IV: Libraries and 1/0 describes character input and output
on an assigned line. Assigned lines control those terminals and other
character-oriented devices not intended for user login.

Single-character Arguments

Some of the routines in this chapter have one or more arguments that are
declared as (2)CHAR. In each case, only the sccond character is used. The
argument can be declared as a 16-bit integer, if this is more convenient for the
programmer. If it is, the actual character argument consists of the least
significant 8 bits of the integer. This technique is intended to make the routines
easy to use from FTN programs.

If the argument is of type INPUT, the first character (or most significant 8 bits of
the integer) is ignored. If the argument is of type OUTPUT, the first character is
set to 8 zero bits.

The routines of this type are

CIIN TIIN
CI1IN$ T10U
CINES$ ERKLS$$

Second Edition 3-3

Subroutines Reference Ili: Operating System

User Terminal Input Routines

34

Second Edition

This section describes the following subroutines:

Routine
C1IN
C1IN$
CINE$
CLS$GET
CNINS$
COMANL
ECL$CC

ECL$CL
RDTK$$
T1IB
TIIN
TIDEC
TIHEX
TIOCT

Function

Read a character.

Read a character.

Read a character, suppressing echo.
Read a line.

Read a specified number of characters.
Read aline into a PRIMOS buffer.

Supervise editing of terminal or command file input; callable
from C.

Provide interface to ECL$CL from non-C programs.
Parse a command line.

Read a character (function).

Read a character (procedure).

Read a decimal number.

Read a hexadecimal number.

Read an octal number.

J)

J

C1IN

r User Terminal /O

C1IN

This routine gets the next character either from the terminal or from a command
file, depending upon the command stream source.

Usage

DCL C1IN ENTRY ((2)CHAR);

CALL CI1IN (char);

r Parameters

char
OUTPUT. Two-byte string into which the character is placed.

Discussion

The next character is read or loaded into char(2), and char(1) is set to all zero

f bits. If the character is RETURN, char(2) is set to newline. If char is declared as
a FIXED BIN integer, or the equivalent in other languages, this routine loads the
character into the least significant 8 bits of the integer, and sets the most
significant 8 bits to zero.

Line feeds are discarded by the operating system and are not read by the C1IN
subroutine.

Use C1INS$ or T1IN if there is a requirement to read from the user terminal
~ rather than a command file, even when a command file is active.

If input is from a command input file, and terminal output has not been switched
off by the COMOS$$ procedure or the COMOUTPUT command, the character is
echoed on the terminal. This is the only difference between C1IN and CINES.
CINES$ does not echo such characters to the terminal.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.
R-mode: No special action.

Second Edition 3-5

)

C1IN$

Subroutines Reference Ill: Operating System

C1IN$

3-6

Second Edition

This routine gets the next character either from the terminal or from a command
file, depending upon the command stream source and the value of term_flag.

Usage

DCL C1IN$ ENTRY ((2)CHAR [, BIT ALIGNED [, BIT ALIGNED]));

CALL C1INS$ (char [, echo_flag [, term_flag 11);

Parameters

char
OUTPUT. Two-byte string into which the character is placed.

echo_flag
OPTIONAL INPUT. If true ('1’b), and input is from a command file, the
character is echoed to the terminal. If echo_flag is missing, the assumed value
is true.

term_flag
OPTIONAL INPUT. If true ("'1°’b), input is taken from the terminal regardless
of whether or not a command file is active. If term_flag is missing, the
assumed value is false.

Discussion

The next character is read into char(2), and char(1) is set to all zero bits. If the
character typed is RETURN, char(2) is set to newline.

Calling C1IN$ with echo_flag and term_flag omitted is equivalent to calling
C1IN (see previous description). In V-mode and I-mode, calling C1INS with
term_flag true is equivalent to calling T1IN (sce later in this chapter). However,
C1INS$ is implemented more efficiently than T1IN. Use C1INS$ in preference to
T1IN if efficiency is more important than the slightly more complicated calling
sequence of C1INS.

Loading and Linking Information
V-modc and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode; Not available.

J

3

CI1NES$

CINE$

User Terminal /O

This routine gets the next character either from the terminal or from a command
file, depending upon the command stream source. If a command input file is
active, the character is not echoed to the terminal.

Usage

DCL CINE$ ENTRY ((2)CHAR);

CALL CINES (char);

Parameters

char
OUTPUT. Two-byte string into which the character is placed.

Discussion

The next character is read or loaded into char(2), and char(1) is set to all zero
bits. If the character is RETURN, char(2) is set to newline.

If input is from a command input file, the character is not echoed to the terminal.
This is the only difference between CINE$ and C1IN. C1IN does echo all such
characters to the terminal.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

Second Edition 3-7

CL$SGET

Subroutines Reference lll: Operating System

CL$GET

3-8 Second Edition

CLS$GET reads a single line of input text from the currently defined command
input stream (terminal or command file).

Usage

DCL CL$GET ENTRY (CHARACTER(*)VARYING, FIXED BIN,
FIXED BIN) RETURNS (FIXED BIN);

comi_switch = CLSGET (comline, comline_size, code);

Parameters

comline

OUTPUT. Varying character string into which the text is read from the
command input stream. Because comline is of type character varying, no
blanks or zeroes are added beyond the last character read.

comline_size
INPUT. Maximum length (in characters) of comline.

code
OUTPUT. Standard error code.

comi_switch

OPTIONAL RETURNED VALUE. Zero if input was read from the user
terminal, and nonzero if input was read from a file.

Discussion

The line is retumed as a varying character string without the newline character at
the end. An empty command line returns the null string, but one consisting of all
blanks is handled as a command line containing ordinary characters.

The user’s erase and kill characters are processed by CLSGET. CL$GET is
preferable to CNIN$ for most purposes. Most applications programs do not
perform their own erase and kill processing.

Example

Below is an example using the subroutine CL$GET.

)

3

CL$GET

User Terminal I/O

OK, SLIST CLGET1.PASCAL

{<readtty.pascal> Reads text from the user terminal
{ using the external PRIMOS routine CLSGET

{

{This program provides an example of how to
{implement the Pascal equivalent of the character
{varying data type found in PL/I. The Prime Pascal
{extension STRING data type has the same structure
{as the CHARACTER VARYING type. The default
{length of a STRING variable is 80.

{The Prime extension STRING functions LENGTH and
{SUBSTR are identical to the PL/I functions of the
{same names.

{

{The object of this program is to read three
{strings from the terminal and display them in
{reverse order

{

program readTTY;

type
char80varying = string;
{Can also be declared as string[80]}

var
cmdline : char80varying:;
table : array(l..3] of char80varying;
i, jJ : integer;
code : integer:;

procedure cl$get (var cmdline: char80varying;

{Command line input buffer}

lenbytes: integer; {Length of cmdline in bytes}
var code : integer) {Return error code status}
extern; {External PRIMOS procedure}
begin

{Loop to input the text entered from the user
{ terminal using the PRIMOS routine defined above
{ (clSget).
{
for i := 1 to 3 do
begin
write(i:1,'> *);
cl$get (cmdline, 80, code):
if code <> 0 then
writeln(’Bad status code returned,
status =’ ,code) ;
table[i] := cmdline;
end;

Second Edition

—— ey

{Save the command line}

3-9

CL$GET

" = = = =5 8 ® ®w ® ®m ﬂ

Subroutines Reference Ill: Operating System

J

writeln;
{ Display the lines just typed in reverse order}
for 1 := 3 downto 1 do
begin
write(i:1,'< ’);
for j := length(table([i]) downto 1 do
write (substr(table[i], j, 1)):
writeln;
end;
end.

This program, stored as CLGET1.PASCAL, can be compiled, loaded, and run
with the following dialog:

OK, PASCAL CLGET1 ‘\
[PASCAL Rev. 20.2 Copyright(c) 1986, Prime Computer, Inc.]

0000 ERRORS [PASCAL Rev. 20.2]

OK, BIND

[BIND Rev. 20.2 Copyright (c) 1985, Prime Computer, Inc.]

: LO CLGET1

: LI PASLIB

: LT

BIND COMPLETE

FILE
OK, RESUME CLGET1 ‘~\
1> ABCDE
2> SECOND
3> MADAMIMADAM

3< MADAMIMADAM
2< DNOCES

1< EDCBA

CK,

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB,

R-mode: Not available,

3-10 Second Edition ‘\

r CNIN$

CNINS$

User Terminal I/O

This subroutine is the raw-data mover used to move a specified number of
characters from the terminal or command file to the user program’s address
space.

Usage

DCL CNIN$ ENTRY (CHARACTER(*), FIXED BIN, FIXED BIN);

CALL CNINS (buffer, char_count, actual_count);

Parameters

buffer

OUTPUT. A buffer in which the string of characters read from the input
stream is to be placed.

char_count

INPUT. The number of characters to be transferred from the input stream to
buffer.

actual_count

OUTPUT. A retumed argument. It specifies the number of characters read by
the call to CNINS. If reading continues until a newline character is
encountered, the count includes the newline character.

Discussion

CNINS reads from the input stream until either a newline character is
encountered or the number of characters specified by char_count is read. If an
odd number of characters is read, the remaining character space in the last
halfword is not modified. The erasc and kill characters are not interpreted.

Input to CNINS is obtained from the terminal unless the process is reading from
a CPL &DATA block, or the user has previously given the COMINPUT
command, and this command is still in control. The COMINPUT and &DATA
commands switch the input stream so that it comes from a file rather than from
the terminal. A phantom can only read commands from its command file. (Refer
to the PRIMOS User’s Guide for further information.)

Second Edition 3-11

CNINS

Subroutines Reference Ili: Operating System

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

3-12 Second Edition

J

-

F

)

COMANL

COMANL

User Terminal /10O

COMANL causes a line of text to be read from the terminal or from a command
file, depending upon the source of the command stream.

Usage

DCL COMANL ENTRY;

CALL COMANL;

Parameters

There are no parameters.

Discussion

The line is read into an internal text buffer. This buffer is internal to PRIMOS
and can be accessed only by a call to RDTK$$. The buffer holds 80 characters.

Use of COMANL and RDTK$$ to read parameters is obsolete in PL/I and
Pascal. The preferred method is to use CLSGET and CL$PIX.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

Second Edition 3-13

ECL$CC

Subroutines Reference lll: Operating Systemn

ECL$CC

3—-14 Second Edition

This routine supervises the editing of input from a terminal or a command file,
for programs written in C. (Use ECL$CL for calling from other languages.)

Usage

(Declaration in the C language)

#define vstr(size) struct { short len;
char data[size+1]; }

typedef vstr(160) vstr_comline;

typedef vstr(50) vstr_prompt;

extern unsigned shortint /* [R] comi_switch */
ECL$CC (vstr_comline *, /* [i/o] comline */

int, /* (1] comline_size */
vstr_prompt *, /*[i] prompt ¥/
int, /* [1] show_prompt */
short *); /* [0] code */

comi_switch = ECL$CC(&comline, comline_size,
&prompt, show_prompt, &code);

Parameters

comline

INPUT —> OUTPUT. A buffer used for input and output. On input, it
contains a string to be inserted into the command line for the user to edit.
Because most applications use ECL to ask for a new command, this is
normally a null string. The cursor is placed at the beginning of the inserted
string. On output, the finished command line is returned to comline.

comline_size

INPUT. The maximum number of characters that can be stored in comline.

prompt

INPUT. The text of the prompt. It can contain only printable characters and
the placeholder character, #. To make the # character appear in the text of the
prompt, specify ## where the character is to appear. If show_prompt is set to
1, the placeholder character is replaced by the current command history entry.

J

)

3

ECLSCC

User Terminal I/O

show_prompt

INPUT. Specify a value of 1 if ECL is to display the prompt. Specify a value
of 0 if the calling program has already displayed the prompt.

code
QUTPUT. The status code. Possible values are

0 The call to ECL$CC was completed without error.
-1 Input was aborted by the ECL command abort_cmd.

comi_switch

OPTIONAL RETURNED VALUE. Zero if input was read from the user
terminal, and nonzero if input was read from a command input file. PRIMOS
uses this value to suppress abbreviation expansion of a command line read
from a command input file.

Discussion

ECLS$CC supports EDIT_CMD_LINE (ECL), a terminal interface and command
line editor. ECL$CC enables a user program written in C to read a single
command line from a terminal or a command file and allows extensive editing of
the command line.

ECLS$CC can insert a string into the command line before the user begins to edit.
Applications that use ECL to ask for a new command normally insert a null
string for the prompt. Applications that want the user to type something might
insert a string that provides information about what the user is to type. For
example, an application that requests the user to type a number might issue the
prompt

Which user:

and insert the string *‘(enter the user’s number)” into the command line
following the prompt. The resulting display would be

Which user: (enter the user’s number)

The cursor appears on the first character of the inserted string, *(’. When the user
types a number, the inserted string disappears, unless the user chooses to edit the
inserted string.

Most user programs do not need to know whether the command comes from a
file or from the terminal. For this reason, most user programs can declare
ECL$CC with the void type specifier and call ECL$CC as a procedure rather
than as a function.

Second Edition 3-15

ECL$SCC

Subroutines Reference Ill: Operating System

ECLS$CC is designed to be called from C., Programs in other languages can call
ECLS$CL, which in turn calls ECL$CC.

If your program uses ECL$CC, ECLSLIB.RUN must be in your entrypoint
search rules.

Example

The following code shows how ECL$CC can display a prompt. The code does
not insert a string into the command line.

unsigned short comi_switch;
vstr comline comline;

int comline_size;

vstr_prompt prompt;

int show_prompt; /* 0 or 1 */
short code;

strcpy (comline.data, ””);

comline.len = strlen(comline.data):;
/* Initialize comline */
/* to null PL/l-style string */

comline size = 160;

strcpy (prompt .data, “MY _PROMPT: ”);

prompt.len = strlen (prompt.data):;

show_prompt = 1;

comi_switch = ECL$SCC(&comline, comline_size,
&prompt, show_prompt, &code):

Loading and Linking Information

V-mode and I-mode: With shared or unshared libraries, load ECL$LIB.BIN.
With unshared libraries, load ECL$LIB.BIN.

Effective for PRIMOS Revision 22.0 and subsequent revisions.

3-16 Second Edition

J

7 EcLscL

ECLS$CL

User Terminal I/0

This routine supervises the editing of input from a terminal or command file, for
programs not written in C.

Usage

DCL ECL$CL ENTRY (CHAR (*)VAR, FIXED BIN(15),
FIXED BIN(15) [, CHAR (*)VAR,
BIT(1) ALIGNED]);

CALL ECLS$CL (comline, comline_size, code [, prompt, show_prompt]);

Programs that need to know whether input is from a user terminal or a command
input file can call ECL$CL as function, using statements of the following form.

DCL ECL$CL ENTRY (CHAR (*)VAR, FIXED BIN(15),
FIXED BIN(15) [, CHAR (¥)VAR,
BIT(1) ALIGNED]) RETURNS (FIXED BIN(15));

comi_switch = ECL$CL (comline, comline_size, code
[, prompt, show_prompt]);

Parameters

comline
INPUT — OUTPUT. A buffer used for input and output.

On input, the contents of the buffer depend on whether ECL$CL is called with
or without the prompt and show_prompt arguments.

If ECL$CL is called with the prompt and show_prompt arguments, comiine
contains a string to be inserted into the command line for editing. Normally,
this is a null string. The cursor is placed at the beginning of the string.

If ECLSCL is called without the prompt and show_prompt arguments, comline
must contain the prompt already displayed by the application prior to the call
to ECL$CL; ECL’s display manager uses the prompt to maintain the screen

properly.
On output, the finished command line is returned tc comline.

comline_size
INPUT. The maximum number of characters that can be stored in comline.

Second Edition 3-17

ECLS$CL

Subroutines Reference lil: Operating System

3-18 Second Edition

code
OUTPUT. The status code. Possible values are

0 The call to ECL$CL was completed without error.
-1 Input was aborted by the ECL command abort_cmd.

prompt
OPTIONAL INPUT. The text of the prompt. It can contain only printable
characters and the placeholder character, #. To make the # character appear in
the text of the prompt, specify ## where the character is to appear. If
show_prompt is true, the placeholder character is replaced by the current
command history entry. If ECL$CL is called without the prompt and
show_prompt arguments, the calling program must pass the prompt using the
comline parameter.

show_prompt

OPTIONAL INPUT. Specify a value of '1°b if ECL is to display the prompt.
Specify a value of "0’b if the calling program has already displayed the
prompt. The call must include this parameter if it includes the prompt
parameter.

comi_switch

OPTIONAL RETURNED VALUE. Zero if input was read from the user
terminal, and nonzero if input was read from a command input file. PRIMOS
uses this value to suppress abbreviation expansion of a command line read
from a command input file. However, most user programs do not need to
know whether the command came from a file or from the terminal. For this
reason, most user programs can omit the RETURNS(FIXED BIN(15)) portion
of the declaration and call ECL$CL as a procedure rather than as a function.

Discussion

ECLS$CL provides an interface to ECL$CC from PL/I and other high-level
languages, except C. ECL$CC supervises the editing of command line input
from a terminal or command file. ECL$CC should be called only from C.

If your program uses ECL$CL, ECLSLIB.RUN must be in your entry point
search rules.

J

b

ECLS$SCL

User Terminal /O

Examples

1.

or

The calling program displays the prompt.

prompt = ‘Enter result ’:

call tnoua(prompt, length(prompt)):
comline = prompt:

call ecl$cl(comline, comline_size, code);

prompt = ’‘Enter result ‘;

call tnoua (prompt, length(prompt)):

comline = '’ ;

call ecl$cl(comline, comline_size, code, prompt, ‘0’b):;

. ECLS$CL displays the prompt. The calling program does not insert a string.

prompt = ’‘Enter result ’;
comline = '';
call ecl$cl(comline, comline_size, code, prompt, ’1'b):;

. Sample program to edit or create a global variable.

edit gvar: procedure (com_args, code):
/* EPF calling conventions */

dcl com_args char (256) var:
dcl code fixed bin(15);

$include ’‘syscom>keys.ins.pll’:
%$include ’‘syscom>errd.ins.pll’;
$include ‘syscom>errormsghdlr.ins.pll’:;

%$replace MAXVARSIZE by 1024;

dcl erS$print entry(fixed bin(l15), char(*) var,
fixed bin(15), char(*) var,
char (*) wvar):;

dcl gvsget entry(char(*) var, char(*) var,
fixed bin(15), fixed bin(1l5));

dcl gvS$set entry (char(*) var, char(*) var,
fixed bin(15)):

dcl eclscl entry (char(*) wvar, fixed bin(1l5),
fixed bin(15), char(*) var,
bit (1) aligned):

dcl gvar_name char(256) var;
dcl prompt char(256) var:

Second Edition 3-19

ECLSCL

Subroutines Reference lli: Operating System

3-20 Second Edition

dcl var value char(MAXVARSIZE) var;
dcl LINKAGE FAULTS condition:
dcl translate builtin;

* Get current value of indicated variable. If not
* defined, then initialize to null string. Global
* variable storage must be defined. The GVAR name
* must be uppercase.
*/

gvar_name = translate(com args,

" ABCDEFGHIJKLMNOPQRSTUVWXYZ' ,

" abcdefghijklmnopgrstuvwxyz’) ;
call gv$get (gvar name, var value, MAXVARSIZE, code);
select (code):

when (0) /* Okay */
when (e$unop) /* No gvar storage defined */
call erS$print (k$nrtn, ssc$errd, e$null,
'No global variable storage defined.’,
"EDIT GVAR'):;

when (e$fntf) /* No such variable */
var value = ’'’; /* Create a new one */
otherwise

call er$print (k$nrtn, ssc$errd, code,
"Could not continue.’, 'EDIT_GVAR');
end;

/*
* Pass value to ECLSCL for editing. If user hits
* ~G (aborts), the value of the variable dces not
* change. Trap problems if
* ECLSLIB interface is not installed.
*/
on condition (LINKAGE FAULTS)
call erS$print (k$nrtn, ssc$errd, e$null,
‘Edit_Cmd Line package not installed.’,
"EDIT GVAR');

* var_value has been set above to the current value

* of the variable, or the null string if it is a new

* variable. This will be inserted. Prompt will be
* name of global variable to be modified.
*/

prompt = gvar name || ': ';
call ecl$cl(var value, MAXVARSIZE, code, prompt,
Illb) :

/* User had typed ~G to abort edit operation */
if (code ”~= 0) then stop;

4 J

N

J) J

3

ECLS$CL

User Terminal I/O

/* Set new value of global variable. */
call gv$set (gvar_name, var_value, code):;
call erS$print (k$irtn, sscSerrd, code,
'GVAR not set.’, 'EDIT_GVAR');
stop:;
end;

Loading and Linking Information

V-mode and I-mode, shared or unshared libraries: Load ECLSLIB.BIN.

Effective for PRIMOS Revision 22.0 and subsequent revisions.

Second Edition 3-21

RDTK$$

J

Subroutines Reference li: Operating System

RDTK$$ A

RDTKS$S parses the command line most recently read by a call to COMANL. If
no previous calls to COMANL have taken place, RDTK$$ parses the last
command line typed at PRIMOS command level by the user. RDTK$$ is
obsolete; CL$PIX should be used instead.

Usage

DCL RDTK$$ ENTRY (FIXED BIN, (8) FIXED BIN, CHAR(*),
FIXED BIN, FIXED BIN);

CALL RDTKSS (key, info, buffer, buflen, code); \

Parameters

key
INPUT. The action to be taken by RDTKS$$. Possible values are
Read next token, convert to uppercase.
Read next token, leave in lowercase.
Reset token pointer to start of command line.

Read remainder of command line as raw text.

N H W N -

Erase the command line.

info
OUTPUT. An eight-halfword integer array set to contain the following \
information (only info(2) is set for a key value 4):

info(1) The type of the token. Possible values are

1 Normal token. (Results of numeric conversions are returned.)
2 Register setting parameter.
5 Null token.
6 End of line.
info(2) The length in characters of the token. A null token has a
zero length.

info(3) Further information about the token. The following bits of
info(3) have the indicated meaning when set: “

3-22 Second Edition -~

)

)

bit 1

bit 2

bit 3

bit 4

bits 5-16

info(4)

info(5)

info(6)—(8)

buffer

RDTK$$

User Terminal IO

(:100000) — Decimal conversion successful (no
overflow), value returned in info(4).

(:040000) — Octal conversion successful, value
returned in info(5). This bit is always set when token
type is 2.

(:020000) — Token begins with unquoted minus sign,
thus token can be a keyword argument.

(:010000) — An explicit position for a register setting
was given; position value is returned in info(4).

Reserved.

Contents depend on flags set in info(3). If bit 4 is set,
info(4) is the position number for the register setting.

(Note that if token type is 2 and bit 4 is not set, the position
is implicit and must have been remembered by the caller.)
If bit 1 is set, info(4) is the converted decimal value.
Otherwise info(4) is undefined.

Contents depend on flags in info(3). If bit 2 is set, info(S) is
the converted octal value. Otherwise info(5) is undefined.

Reserved.

OUTPUT. A character string into which the literal text of the token is written
by RDTK$$ and blank-padded to length buflen, in halfwords.

buflen

INPUT. The specified length (in halfwords) of buffer. buflen must be >= 0.

code

OUTPUT. Standard error code. Possible values are

E$OK
ESBKEY
ES$SBPAR
E$BFTS

Discussion

No errors.
Value of key is illegal.
Bad parameter; buflen is less than 0.

Value of buflen is too small to contain the full text of the
token. The token is truncated.

RDTKS is obsolete. CL$PIX should be used instead for parsing lines read
using CL$GET. CL$PIX should also be used for parsing the command lines of

Second Edition 3-23

RDTK$$

Subroutines Reference 1il: Operating System

3-24 Second Edition

EPF (Executable Program Format) programs. For other cases, you can recover
the whole line with RDTK$$, using key value 4, convert it to type character
varying, and analyze it using CL$PIX.

Parsing proceeds token by token. A command line consists of tokens (for
definitions, see Tokens section later in this chapter) separated by delimiters. The
current delimiters are

space comma /* newline
The reserved characters in command lines are
(L{)1}'!';~"7:~1\.DEL.

However, you can include one of these characters in a token by enclosing the
token in single quotes; for example, *awful(so to speak)’. The /* characters, if
unquoted, begin a comment field that extends to the end of the line and are
ignored by RDTK $$.

Each call to RDTK$$ reads a single token from the command line. RDTK$$
returns the literal text of the token, together with some additional information
about it. If the token is numeric, RDTK$$ provides results of decimal and octal
conversion attempts. RDTK$$ also informs the caller if a numeric token can be
interpreted as a register setting (octal parameter) under the old PRIMOS
command line structure.

Delimiters: Delimiter characters have four functions: token separation,
content indication, literal text delineation, and line termination. The set of
delimiter characters is

SP , ° NL /*

The meanings of these characters are discussed in the next paragraphs.

Blank Interpretation (SP): A single blank terminates a token. A multiblank
field is precisely equivalent to a single blank. Blanks surrounding another
delimiter are ignored. Leading and trailing blanks on the command line are
ignored.

Comma Interpretation: A single comma terminates a token and is
equivalent to a blank. Two or more commas in succession, however, gencrate
null tokens. If a comma is the first or last character on the command line, a nuil
token is gencrated. A command line consisting of only n commas (with no text)
generates n+1 null tokens.

Literal Text Character: Literal text strings start and end with a single quote
mark. Any characters, including delimiters but excluding a newline, can appear
inside a literal string; the entire string is treated as a single token. Rules for

J

3

RDTK$$

User Terminal I/O

literal quote marks are the same as in COBOL or FORTRAN: each literal quote
mark in the string must be doubled:

"HERE”S A LITERAL .’

A token can be partially literal, for example, ABC’'DEF’. Numbers in literal text
are interpreted as textual characters. (See token definitions below.) A literal
string is ended either by a single quote mark or by a newline character.

Newline Delimiter (NL): A newline character terminates the preceding
token. If the newline is in a literal text field, the literal is terminated. If a
newline is encountered before any token text or delimiter, an end-of-line token is
generated.

Comment Delimiter (/*): When the character pair /* is encountered, all
subsequent text on the command line is ignored. A /* at the beginning of a
command line causes an immediate end-of-line token to be generated.

Tokens

A token is any string of characters not containing a delimiter. A token can be
from 0 to 80 characters in length. The following are examples of valid tokens:

FIN

LONG-FILENAME

1/707

6

98
String.even.longer.than.thirty—two.characters
[path]name

..NULL. (null string)

Literal text including delimiters can be entered in quote marks using FORTRAN
rules:

"STRING WITH EMBEDDED BLANKS’

"HERE”S A LITERAL QUOTE MARK’

Token Types

Associated with each token is a type. Possible token types are discussed in the
following paragraphs.

Second Edition 3-25

RDTK$$

Subroutines Reference lll: Operating System \

3-26 Second Edition

ﬂ

Normal Token: A nommal token is any string of characters except a
register-setting token. The string may or may not include literal text. Examples
of normal tokens are

FTN

AO0O001

This.is.a.token.

PARTIALLY' LITERAL

’8’xxx (Note: '8’ is treated as a nonnumeric.)

93533993 (_ n’)

Register-setting Token: Register-setting tokens, or octal parameters

(explained in the LOAD and SEG Guide), are now considered obsolete. They

are handled by RDTK$$ solely to permit existing software and command files to

continue to function. New software should not use such parameters; symbolic ‘\
keywords should be used instead: for example, FTN XX —64V instead of FTN

XX 2/400.

The rules for recognition of a register-setting parameter are as follows. A token

of the form octal/octal is always recognized as a register setting (unless enclosed

in quotes). Initially, unembellished octal integers are also recognized as

implicit-position register settings. If a token begins with an unquoted minus

sign, and does not successfully convert as a decimal integer, recognition of
implicit-position register settings is disabled. Recognition is reenabled only by a ‘\
subsequent occurrence of an explicit-position register setting: for example,

octal/octal.

Null Token: A null token is gencrated when two delimiters are encountered in
a row (except for multiple context characters). The following are examples of
command lines generating null tokens:

, (Start of line is a delimiter in this case.)

XY ‘\

End-of-line Token: This token is generated when the end of the command
line is reached.

Strategy

RDTKS$$ maintains an intemnal pointer that points to the next character in the
command line to be scanned. This pointer is set to the start of the command line
by COMANL. It can also be reset to the start of the line with a RESET (key=3)
call to RDTK$$.

J

3

RDTK$$

User Terminal I/O

Following a PRIMOS command, the internal pointer is positioned after the main
command. If RESUME was the command, it is positioned after the RESUME
filename.

Regardless of the token type, RDTK$$ always returns the literal text of the
token. Delimiter characters (unless inside quote marks) are never retumed.

If a token is truncated (0o long to fit in buffer), the next call to RDTK$$ retums
the next token, not the truncated text.

For register-setting tokens (octal parameters), the octal position number is
returned by RDTKS$$ only if explicitly given in the token (for example, 6/123).
Hence, the current register-setting position must be remembered by the caller.

A buflen of 0 can be used to skip over a token. The error code E$BFTS is
returned.

For a key of 4 (read raw text), all text between the current RDTK$$ pointer and
the end of the command line (newline) is returned. No checking is done for any
delimiters or special characters other than newline. No forcing to uppercase is
performed.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: IL.oad NPFTNLB.

R-mode: No special action.

Second Edition 3-27

T11B

Subroutines Reference llI: Operating System

T11B

T11IB reads one character from the user terminal.

Usage

DCL T1IB ENTRY RETURNS (FIXED BIN);

charval = T1IB ();

Parameters

charval
RETURNED VALUE. Input character.

Discussion

charval contains the binary equivalent of the character just read. charval must
be declared as a 16-bit integer, not as a character string. This function always
reads from the terminal. Use C1IN if there is a requirement to read a character
from an active command input file.

This function can be called from PMA to load a character from the terminal into
Register A. It cannot be called from FTN, as it has no parameters. Use C1IN$ or
T1IN instead.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

3-28 Second Edition

J

~

J

r T1IN

T1IN
- - [] [L L} L] - [] L]

User Terminal I/0

T1IN reads one character from the user terminal.

Usage

DCL T1IN ENTRY ((2)CHAR);

CALL T1IN (char);

Parameters

char
OUTPUT. Two-byte string into which the character is placed.

Discussion

The next character is read or loaded into char(2), and char(1) is set to all zero
bits. If a RETURN is read, a newline is output and char is set to newline. If a
LINEFEED (newline) character is read, it is discarded by PRIMOS.

If char is declared as a FIXED BIN integer, or the equivalent in other languages,
this routine loads the character into the least significant 8 bits of the integer, and
sets the most significant 8 bits to zero.

Use C1IN if there is a requirement to read from an active command file.

The routine C1IN$ (described earlier in this chapter) is also capable of forcing
input to come from the terminal, and is implemented more efficiently than T1IN.
Use C1INS$ in preference to T1IN if efficiency is more important than the
slightly more complicated calling sequence of C1IN$.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

Second Edition 3-29

TIDEC

Subroutines Reference Ili: Operating System

TIDEC

TIDEC reads terminal input as a decimal number.

Usage

DCL TIDEC ENTRY (FIXED BIN);

CALL TIDEC (variable);

Parameters

variable
OUTPUT. Binary value of character string typed.

Discussion

The number may be preceded by a minus sign to indicate that it is negative, but
must not be preceded by a plus sign. Numbers can be terminated by a carriage
return or a space. A question mark or other error message is displayed if a
numeric input is invalid, and more input is then accepted. A space or carriage
return is then accepted as a zero.

This routine does not carry out erase or kill processing.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: L.oad NPFTNLB.

R-mode: No special action.

3-30 Second Edition

J

N\

)

r TIHEX

Y

TIHEX

User Terminal I/O

TIHEX reads terminal input as a hexadecimal number.

Usage

DCL TITHEX ENTRY (FIXED BIN);

CALL TIHEX (variable);

Parameters

variable
OUTPUT. Binary value of character string typed.

Discussion

The number may be preceded by a minus sign to indicate that it is negative, but
must not be preceded by a plus sign. Numbers can be terminated by a carriage
return or a space. A question mark or other error message is displayed if a
numeric input is invalid, and more input is then accepted. A space or carriage
return is then accepted as a zero.

This routine does not carry out erase or kill processing.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

Second Edition 3-31

TIOCT

Subroutines Reference lii: Operating System

TIOCT

3-32 Second Edition

TIOCT reads terminal input as an octal number.

Usage

DCL TIOCT ENTRY (FIXED BIN);

CALL TIOCT (variable);

Parameters

variable
OUTPUT. Binary value of character string typed.

Discussion

The number may be preceded by a minus sign to indicate that it is negative, but
must not be preceded by a plus sign. Numbers can be terminated by a carriage
return or a space. A question mark or other error message is displayed if a
numeric input is invalid, and more input is then accepted. A space or carriage
return is then accepted as a zero.

This routine does not carry out erase or kill processing.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

)

r
r

User Terminal I/O

User Terminal Output Routines

This section describes the following subroutines:

Routine
ERS$PRINT

I0A$
IOASER
TNOU
TNOUA

r TODEC
TOHEX
TONL
TOOCT
TOVFDS$
T10B

' & T10U

Function

Print a standard error message from PRIMOS or a PRIMOS
subsystem.

Provide free-format output.

Provide free-format output, for error messages.

Write characters to terminal, followed by newline character.
Write characters to terminal.

Write a signed decimal number.

Write a hexadecimal number.

Write a newline character.

Write an octal number.

Write a decimal number, without spaces.

Write one character from Register A.

Write one character.

Second Edition 3-33

ERS$PRINT

Subroutines Reference lli: Operating System

ERSPRINT
ER$PNT

3-34 Second Edition

This routine prints error messages from PRIMOS and specified PRIMOS
subsystems on the user terminal.

Usage

DCL ER$PRINT ENTRY (FIXED BIN(15), CHAR(*)VAR,
FIXED BIN(15),
CHAR(*)VAR, CHAR(*)VAR);

CALL ERS$PRINT (key, sscode, ercode, text, name);

Parameters

key

INPUT. The action that ERSPRINT is to take after printing a message.
Possible values are

K$NRTN Exit to the system; the system cannot retumn to the calling
program.
K$SRTN Exit to the system; return to the calling program following
a START command.
K$IRTN Return immediately to the calling program.
sscode

INPUT. The subsystem for which ER$PRINT is to print an error message.
Specify a code that designates a PRIMOS subsystem. Subsystem codes are
defined in the file ERRORMSGHDLR.INS.language, where the language
suffix denotes the programming language. Some of the possible subsystem
codes are

SSC$ERRD ERRD messages (ERRDS)
SSC$SYNC Event synchronizers (SYNCS$)
SSC$TIMER Timers (TIMERS$)

SSCS$ISC InterServer Communications (ISC$)

D

ER$PRINT
a = = 2 = a8 @ " 8 @

User Terminal /0O

ercode

INPUT. The retum code from the subroutine that produced the error. If
ercode is ESOK or invalid, ERSPRINT prints nothing and control retums
immediately to the calling program.

text

INPUT. A message to be printed following the subsystem error message. The
maximum number of characters is 256.

name

INPUT. The name of the calling routine. The maximum number of
characters is 256.

Discussion

ERS$PRINT finds an error message in a message file in the SYSOVL directory or
in the PRIMOS intemal message table, and displays the message on the terminal.
ERS$PRINT can also display qualifying text for the error message and the name
of the routine that calls ERSPRINT, if the text and the name are specified in the
call to ERSPRINT. ER$PRINT is similar in function to ERRPRS, except that
ERS$PRINT can return messages for a particular PRIMOS subsystem that you
specify.

To find an error message, ERSPRINT first looks in the SYSOVL directory for a
message file, as specified by the subsystem name appended with
_ERROR_TABLE. Forexample, the synchronizer message file is specified by
SYNC$_ERROR_TABLE. Note that by convention, the names of PRIMOS
subsystems end with a dollar sign ($). If the specified SYSOVL file exists,
ERSPRINT displays the message in the SYSOVL message file that corresponds
to the error code in ercode.

If the SYSOVL file does not exist, ER$PRINT looks for the message in the
PRIMOS internal message table. The messages in the PRIMOS internal
message table are in English. If ERSPRINT cannot find the message in the
PRIMOS internal message table, it prints the values of ercode and sscode.

Programs that call ERSPRINT must insert the file
SYSCOM>ERRORMSGHDLR.INS.language, where language is a suffix
specifying the program’s language. Programs should use the values defined in
the insert file rather than the numeric values or strings to which the values
correspond.

Loading and Linking Information
The dynamic link for ER$PRINT is in PRIMOS.

Effective for PRIMOS Revision 22.0 and subsequent revisions.

Second Edition 3-35

I0AS

Subroutines Reference lll: Operating System

I0OAS

3-36 Second Edition

IOAS$ provides free-format terminal output.

Usage
CALL IOAS (control, conlen |, argl, ... argn));

The form of the declaration for IOA$ depends on the number and types of
arguments specified in the call to IOAS.

Parameters

control

INPUT. Template string (CHARACTER NONVARYING). See Discussion
below for the format of this string.

conlen

INPUT. Length of control (FIXED BIN). If control is self-terminating,
conlen may be larger than the active length of control. For more information,
see Discussion below.

argl, ... argn

INPUT. Data for variable fields in string. There may be between zero and 99
data arguments.

IOAS is designed so that different calls can have a different number of
parameters and the parameters can have any data type. If IOAS is called from
PL/I, each PL/I procedure must declare IOA$ with the parameters and types
specified, and the module can only make calls to IOA$ with those parameter
types. These comments also apply to Pascal.

In FTN, F77, and COBOL, IOA$ can be called with varying numbers of
parameters in different places. The CBL compiler issues a waming message,
which may be ignored.

Discussion

I0AS$ provides free-format output to the terminal. Most application programs
can use the standard output package provided with the programming language.
For example, C programmers should use the standard C procedure printf, on
which IOAS is based. Pascal programmers should use the standard Pascal
procedure write.

p

)

IOA$

User Terminal /O

However, systems programs can benefit from the efficiency and flexibility of
IOAS$. The format of the IOA$ template is simple and can be constructed even
at runtime.

The first parameter, control, is a string that provides a template for the output.
The string contains a mixture of text and control codes; control codes are
introduced by a character pair made up of the escape character and the percent
symbol.

Any character not in a control code is output to the terminal. Most control codes
cause data to be formatted and written onto the terminal. The data to be
formatted is taken from the variable-length argument list. IOA$ maintains an
internal pointer that initially points to arg/. When a control sequence calls for
the next argument, IOA$ uses the argument currently pointed to and advances
the pointer. If IOAS$ runs out of arguments, output stops immediately. If IOA$
reaches the end of control without using all the arguments, the excess arguments
are ignored.

You must ensure a match between the control codes and the actual arguments.
IOAS cannot detect an attempt to convert a parameter of an inappropriate type.

A simple example follows below. This statement converts the value of the 16-bit
integer variable code to characters, and types the string with the value inserted:

CALL IOA$ (/CODE IS %D.’, 11, code):
The resulting string may look like this:

CODE IS 99.

Control Code Format

The format of a control code sequence is as follows:

Y fw:prec.scaleZRtype
The notations fiwv, prec, .scale, and type each stand for a single character or
possibly (in the case of fw and .scale) a sequence of characters. Only the %

(percent symbol) and type are required; the other parts are optional. The parts of
the code are

Second Edition 3-37

IOAS$

Subroutines Reference Ili: Operating System

3-38 Second Edition

fw

:prec

.scale

W N = O

Field width, or (occasionally) repeat count. This is normally
an integer, but may be a # character (number sign). If the
conversion uses this as a field width, the output data consists
of fw characters. If the specified field width is zero, the
output data occupies as much space as is necessary to contain
it. If the data needs fewer than fw characters, the data is
justified either right or left, as noted with the individual type
descriptions below.

If fw is negative or omitted, it assumes the value of O for a
field width, or 1 for a repeat count.

If fw is the character # instead of an integer, the actual field
width (or repeat count) is taken from the next argument,
which is interpreted as a halfword integer.

Precision. Note the required colon. This refers to numeric
fields, and indicates the type of integer provided as an
argument. For nonfloating numbers, possible values for prec
are

Unsigned 16-bit integer
Signed 16-bit integer
Signed 32-bit integer
Unsigned 32-bit integer

For floating point numbers, the possible values are

Signed 32-bit integer
Signed 64-bit or 128-bit integer

If the precision specifier is omitied, the default value is 1.

Specifies the number of digits to display to the right of the
dccimal point. Note the required period. The .scale specifier
cannot follow immediately after the percent symbol specifier.

If the letter Z is present, an integer is zero-filled to the
field width, rather than space-filled. Z may be in either
uppercase or lowercase. The X and L conversions use
Z in a special way; see the descriptions of these
conversions, below.

If the letter R is present, the normal sense of
justification is reversed. Fields normally left-justified
will be right-justified, and vice versa. R may be in
either uppercase or lowercase.

“N
N\

bype

%

IOAS$

User Terminal /O

A character indicating the type of conversion to be applied. If
the character is a letter, the letter may be in either uppercase
or lowercase.

The type characters, and the conversions they represent, are as
follows:

Output a single % (percent symbol) to the terminal.
The field width, precision, Z, and R, are ignored.

Output the next argument as a decimal number,
right-justified. If the field width is too small to contain
the number, as many characters as needed are output.

Output the next argument as a decimal number in
exponential form. The maximum number of digits that
IOAS$ displays to the right of the decimal point is 8.
When you specify .8 for .SCALE, IOAS$ displays the
number as d.ddddddddE dd, where the final “dd” is a
positive exponent. A negative exponent is expressed
as a final “—dd”. If the exponent contains more than
two digits, the final ‘“dd” is extended to the right.
Examples of numbers in exponential format are:
1.01386568E168 (three-digit positive exponent) and
7.66629847TE~66 (two-digit negative exponent).

Output the next argument as a decimal number in
fixed-point notation. The maximum number of digits
that IOAS displays in this format is 10. If a number is
greater than 2147483647.0 after scaling, IOA$ displays
the number in E format. For example, if you specify a
control code of %:1.5F to display the number 3.0ES,
I0AS$ displays the number as 3.00000EOQS rather than
as 300000.00000.

Same as D above, except the number is output in octal.

Same as D above, except the number is output in
hexadecimal.

Octal halfword. %W is equivalent to %:0ZO.

Character string. The next argument is the string
(nonvarying), and the argument after that is a halfword
integer giving the string’s length. If the length is
negative, it is treated as zero. The string is
left-justified and should be halfword aligned. Precision
and Z are ignored.

Second Edition 3-39

10A$

Subroutines Reference lll: Operating System

A g

Trimmed character string. Same as C, except the
specified string length is adjusted downwards by
removing trailing blanks from the string.

Varying character string. The next argument is a string
of type character varying. It is displayed left-justified.
Precision and Z are ignored.

Logical. The next argument is a 16-bit integer
(precision is ignored) that is regarded as true if any bit
is 1. If Z is not present, the result of the conversion is
the letter T or F. If Z is present, the result is the word
TRUE or FALSE. The output is right-justified.

Pointer. The next argument is a pointer that can be 2 or
3 words long. The pointer’s value is displayed in the
standard Prime format, and is left-justified. Precision
and Z are ignored.

Output fi filler characters. The filler is O (zero) if Z is
present; normally it is the space character. Precision
and R are ignored.

Output fiw newlines. Precision, Z, and R are ignored.

Output fiw form feed characters. Precision, Z, and R
are ignored.

Terminate control string immediately. If the string
ends with %$, you do not need to count the characters
in control; conlen can be any number equal to or
greater than the actual string length.

Terminate control immediately (as with %$) and output
anewline.

Start repeat group. The repeat count is fw, which must
be nonzero. All text and conversions between the %(
and the next %) are repeated fw times. Precision, Z,
and R are ignored. The repeat group should not
contain a nested %(string.

End repeat group (see above).

Reposition in the argument list. The fw value indicates
where to reposition; a value of 1 (or less) repositions to
the first of the variable arguments. A value of greater
than 99 is treated as 99.

If a conversion specifier does not follow the format rules, the result is undefined.

3-40 Second Edition

“N\
N\

J

)

IOAS$

User Terminal /O

Examples
Two examples are supplied below: the first is in FTN and the second is in PL/I.

The following FTN subroutine accepts two arguments: a string and the string’s
length. It displays the string and its length, followed by the string’s address:

SUBROUTINE DISP (ISTR, ILEN)
CALL IOAS (’'”“%c” has %d characters.%.’,

1 ISTR, ILEN, ILEN)

CALL IOAS$ ('It is at %p%.’, 100, LOC(ISTR))
RETURN

END

100,

If the following call is made

CALL DISP ('TEST STRING’, 11)

the output is

“TEST STRING” has 11 characters.
It is at 4335(3)/1001

The following PL/I subroutine has two arguments: a string and a 32-bit integer. It
first displays the string in a 20-column field, indented by 4 spaces, and then

displays the number in hexadecimal.

disp2: proc{string, value);

declare string char(*)varying,
value fixed bin(31),

ioa$ entry (char(*), char(*)var, bin(31)):

bin,

call ica$ ('%4x%20v%8:2zh%.’, 100, string, value):;

end;

If the following call is made
12345678) ;

call disp2(’Hexadecimal value:’,
the output is

Hexadecimal value: 00BC614E

Second Edition 3-41

IOAS

Subroutines Reference lll: Operating System

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

3—42 Second Edition

-
r

)

)

IOASER

IOAS$ER

User Terminal I/O

IOASER provides free-format terminal output. Its most frequent use is for
displaying error messages, because it forces terminal output.

Usage

CALL IOASER (control, conlen, argl, ... argn);

There is no DCL statement because IOA$ER can be called at different times
with different numbers and types of arguments. More information is given in the
IOAS$ description.

Parameters

control

INPUT. Template string (CHARACTER NONVARYING). See the
Discussion section of IOA$ for the format of this string.

conlen
INPUT. Length of control (FIXED BIN). If contro! is self-terminating,
conlen may be larger than the active length of control. See the Discussion
section of IOA$ for more information.

argl, ... argn
INPUT. Data for variable fields in string. There may be between 0 and 99
data arguments. If there are more than 99 arguments, the excess arguments are
ignored.

Discussion

IOASER differs from IOAS$ in one respect. Before the text is output to the
terminal, command output is forced on. This ensures the user will see the
message, even if command output has been turned off by the COMOUTPUT
command or the COMOS$$ procedure.

See the description of IOAS for further discussion of the meaning of the
parameters.

Second Edition 3-43

IOASER

Subroutines Reference Ill: Operating System

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries:

R-mode: Not available.

3—44 Second Edition

Load NPFTNLB.

)

J

TNOU

TNOU

User Terminal I/O

TNOU writes a specified number of characters to the user terminal followed by a
line feed and carriage retumn.

Usage

DCL TNOU ENTRY (CHAR(*), FIXED BIN);

CALL TNOU (buffer, count);

Parameters
buffer
INPUT. Text to be written.

count
INPUT. Number of characters to be written.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.
R-mode: No special action.

Second Edition 345

TNOUA

Subroutines Reference lll: Operating System

TNOUA

TNOUA writes a specified number of characters to the user terminal, without
appending a line feed or carriage return.

Usage

DCL TNOUA ENTRY (CHAR(*), FIXED BIN);

CALL TNOUA (buffer, count);

Parameters
buffer
INPUT. Text to be written.

count
INPUT. Number of characters to be written.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB,
R-mode: No special action.

3—46 Second Edition

J

TODEC

’ User Terminal /O

7 ToDEC

TODEC outputs a six-character signed decimal number.

Usage

DCL TODEC ENTRY (FIXED BIN);

CALL TODEC (variable);

Parameters

variable
INPUT. Value of number to be typed.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

Second Edition 3-47

)

TOHEX

Subroutines Reference Ill: Operating System

TOHEX

3-48 Second Edition

TOHEX outputs a four-character unsigned hexadecimal number.

Usage
DCL TOHEX ENTRY (FIXED BIN);
CALL TOHEX (variable);
Parameters

variable
INPUT. Value of number to be typed.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries:

R-mode: No special action.

Load NPFTNLB.

J

J

7 TonL

TONL

User Terminal I/O

TONL outputs a carriage return and line feed.

Usage

DCL TONL ENTRY;

CALL TONL;

Parameters

There are no parameters.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

Second Edition 3—49

TOOCT

Subroutines Reference lll: Operating System

TOOCT

3-50 Second Edition

TOOCT outputs a six-character unsigned octal number.

Usage
DCL TOOCT ENTRY (FIXED BIN);
CALL TOOCT (variable);
Parameters

variable
INPUT. Value of number to be typed.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries;

R-mode: No special action.

Load NPFTNLB.

J

J

r
~

3

TOVFD$

TOVFD$

User Terminal I/O

TOVFDS$ writes a 16-bit integer to the terminal.

Usage

DCL TOVFD$ ENTRY (FIXED BIN);

CALL TOVFDS (variable);

Parameters

variable
INPUT. Value of number to be typed.

Discussion

This subroutine writes number, which should be a 16-bit integer, to the terminal
without any spaces (for example, 123 or—17).

Loading and Linking Information

V-mode and I-mode: No special action to load. Link with
FORTRAN_IO_LIBRARY.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

Second Edition 3-51

T10B

Subroutines Reference lll: Operating System

T10B

3-52 Second Edition

T10B writes one character from Register A to the user terminal. This procedure
can be called only from PMA, because the user must have access to Register A.

Usage

CALL T10B;

No DCL statement is provided because the routine can only be called from
PMA.

Parameters

There are no parameters.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.
R-mode: No special action.

T10U

r User Terminal I/O

7 tio0u

T10U writes a character to the user terminal.

Usage

DCL T10U ENTRY (CHAR(2));

CALL T10U (char);

Parameters

char
INPUT. The character in char(2) is typed.

Discussion

If the data type of char is a 16-bit integer, the least significant 8 bits of the
integer form the character to be typed.

/ If char is a newline character, a return and a newline are output to the user
terminal.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

Second Edition —53
~ 3

Subroutines Reference 1ll: Operating System

User Terminal Control Routines

3-54 Second Edition

This section describes the following subroutines:

Routine
BREAKS$
COS$GET
COMISS
COMOSS$
DUPLX$
ERKL$$
QUITS
TTYS$IN
TTY$OUT

TTYS$RS

Function

Inhibit or enable BREAK function.

Return information about command output settings.
Switch input between the terminal and a file.
Switch output between the terminal and a file.
Control the way PRIMOS treats the user terminal.
Read or set the erase and kill characters.

Determine if there are pending quits.

Check for unread terminal input characters.

Check whether there are characters in user’s tecrminal output
buffer for a calling process.

Clear the terminal input and output buffers.

J

J

r

BREAK$

BREAKS$

User Terminal I/0O

BREAKS inhibits or enables CONTROL~P for interrupting a program.

Usage

DCL BREAKS ENTRY (FIXED BIN);

CALL BREAKS (logic_value);

Parameters

logic_value
INPUT. A 16-bit integer whose value can be 1 (TRUE) or 0 (FALSE).

Discussion

The LOGIN command initializes the user terminal so that the CONTROL~P or
BREAK key causes an interrupt (QUIT). The BREAKS routine, if called with
the argument 0, enables the CONTROL-P or BREAK key to interrupt a running
program.

The BREAKS routine called with the argument 1 inhibits the CONTROL-P or
BREAK characters from interrupting a running program.

This routine maintains a master list of the QUIT status for each user. Each call to
BREAKS, to inhibit or enable QUIT, increments or decrements a counter,
respectively. QUITS are enabled only when the counter is 0; the counter becomes
positive with inhibit requests, and cannot be decremented below 0.

While QUITs are inhibited, the user can still determine if a CONTROL-P was
typed by using the QUITS routine.

BREAKS$ has no effect under PRIMOS 1I.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

Second Edition 3-55

COS$GET

Subroutines Reference Ili: Operating System

COSGET

COS$GET retrieves information about the state of the user’s command output
(COMO) settings.

Usage

DCL CO$GET ENTRY (FIXED BIN, FIXED BIN);

CALL COS$GET (reserved, status);

Parameters

reserved
OUTPUT. Reserved.

status

OUTPUT. The least significant two bits of this halfword indicate the state of
the command output stream. The bit settings are independent of each other.
The meanings are as follows:

Bit Number Meaning

1 If set (1), command output will go to the terminal. If clear
(0), the terminal will receive no command output.

2 If set (1), a command output file is active. If clear (0),
there is no active command file, or a command file is
active and paused.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.
R-mode: Not available.

3-56 Second Edition

)

r
-

COMI$S

COMI$S

User Terminal I/O

COMIS$$ switches the command input stream from the user terminal to a
command file, or from a command file to the terminal.

Usage

DCL COMI$$ ENTRY (CHAR(*), FIXED BIN, FIXED BIN,
FIXED BIN);

CALL COMISS (filnam, namlen, funit, code);

Parameters

Sfilnam

INPUT. The name of the command file to receive the command input stream
(integer array). If filnam begins with the string TTY, the command stream is
switched back to the terminal and funit is closed. If filnam begins with the
string PAUSE, the command stream is switched to the terminal but the file
unit specified by funit is not closed. If filnam begins with the string CONTIN,
the command stream is switched to the file already open on funit. Strings
beginning with TTY, PAUSE, or CONTIN cannot be used as filenames.

namlen
INPUT. The length (in characters) of filnam.

Sunit
INPUT. The file unit on which to open the command file specified by filnam.
Normally, file unit 6 is used.

code
OUTPUT. Standard error code.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB,
R-mode: No special action.

Second Edition 3-57

COMOS$$

Subroutines Reference Ill: Operating System

COMOS$$

3-58 Second Edition

COMOS$$ switches terminal output to a file or terminal.

Usage

DCL COMOS$$ ENTRY (BIT(16), CHAR(*), FIXED BIN, FIXED BIN,

FIXED BIN);

CALL COMOS$S (key, filnam, namlen, xx, code);

Parameters

key

INPUT. A halfword of flags specifying the action to be taken. The values
below are specified in octal:

:000001
:000002
:000010
:000020
:000040

:000100

Sfilnam

Tum TTY output off.
Tum TTY output on.
Tum file output off,

Tum file output on.

Append to filnam if filnam is being opened; close filnam if
turning file output off.

Truncate filnam if filnam is being opened.

INPUT. The name of the file to be opened. The file must be in the current
dircctory. Do not specify a full pathname.

namlen

INPUT. The length (in characters) of filnam.

XX

INPUT. Reserved. Should be specified as 0.

code

OUTPUT. Standard error code from the file system.

J)

J

)

)

COMOS$$

User Terminal I/O

Discussion

Routing of the terminal output stream is modified as indicated by the key. If TTY
output is tuned off, all printing at the terminal is suppressed until TTY output is
reenabled or until a command output file error message is generated. If a
filename is specified, any current command output file is closed, and then the
new file is opened for writing. All subsequent terminal output is sent to the new
file. TTY output continues unless explicitly suppressed. Unless the APPEND
option bit is set, the current contents of the file are overwritten. The parameter
can be omitted by specifying a pair of blanks or a length of O.

Error messages (from ERRRTN, ER$PRINT, or IOA$ER) force TTY output on,
but leave the command output file open so the error message will appear both on
the terminal and in the file. Disk error messages force TTY output on and file
output off for the supervisor user (the file is left open). Unrecovered disk errors
will do likewise for the user to whom the disk is assigned.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

Second Edition 3-59

DUPLX$

Subroutines Reference Iil: Operating System

DUPLXS$

3-60 Second Edition

DUPLXS is called to control the manner in which the operating system treats the
user terminal.

Usage

DCL DUPLX$ ENTRY (BIT(16)) RETURNS (BIT(16));

old_tcw = DUPLXS (tcw);

Parameters

tew

INPUT. Terminal configuration word. See below.

old_tcw

OPTIONAL RETURNED VALUE. Both tcw and old_tcw represent the
terminal configuration word, which is a 16-bit integer whose bits have the

following meanings (the values below are specified in octal): ‘\
Bit Mask Meaning if Bit is Set
1 1100000 Half duplex.
2 :040000 Do not echo LINEFEED after CARRIAGE RETURN.
This bit is meaningful only with half duplex (bit 1 set).
3 :020000 Turn on XOFF/XON character recognition.
4 :010000 Output currently suppressed (XOFF received). ‘\
5 1004000 Detect DATA SET BUSY before output to AMLC line.
(See AMLC Functions below.)
6 :002000 Handle reverse channel functionality. (See AMLC Func-

tions, below.)

Data Set Sense Bits
Bit6=1 Bit6 =0

1 (off) XOFF XON

1 (on) XON XOFF

J

)

\

Note

DUPLX$

User Terminal I/O

Bit Mask Meaning if Bit is Set
7 :001000 Check for certain error conditions:

e Overflow of the input buffer
e Parity error

If one of these conditions is present, the character found
is replaced with the NAK character.

8 :000400 Indicates a parity error (output). Overflow of the input
buffer is flagged when there is only room for one more
character.

9-16 :000377 Internal buffer number (read-only). These bits have no
meaning on systems configured with more than 255 ter-
minal users.

DUPLXS returns O as the internal buffer number if the number is greater than or equal to
256. For this reason, always use ASSLIN or ASSLST to retrieve the buffer number,
parity error, and echo setting when the internal buffer number of a line is greater than or
equal to 256. ASSLIN and ASSLST can also be used to retrieve this information when
the line’s buffer number is less than 256.

Discussion

DUPLXS returns the terminal configuration word and internal buffer number as
the value of the function. DUPLXS$ must be declared as a function if the returned
value is to be used by the calling program.

If the terminal configuration word passed to DUPLX$ is set to all ones, no
updating of the configuration word takes place, and the current value is returned.

When the terminal is configured for full duplex, bit 2 of the terminal config-
uration word is ignored. When the terminal is configured for half duplex, the
line protocol indicates whether to echo LF after CR.

The zcw of a user terminal is not affected by the LOGIN or LOGOUT
commands. The zcw of the user terminal can also be set at the supervisor terminal
by using the SET_ASYNC command or the AMLC command. Users can also
use the PRIMOS command TERM to change their terminal characteristics.

AMLC Functions

Certain devices require a reverse channel protocol to signal BUSY or READY.
For these cases, the carrier detect line is used for the signal. Bit 5 of the terminal
configuration word instructs the AMLC (Asynchronous Multi-line Controller)

Second Edition 3-61

DUPLX$

Subroutines Reference Ill: Operating System

3-62 Second Edition

software to interrogate the carrier signal for that line before writing to the device.
If a BUSY is detected, then the AMLC software simulates an XOFF received for
that line. When the carrier signal goes to the READY state, the AMLC software
flags it as an XON, and output resumes. For example, if the device signals
BUSY as DATA SET OFF (1), then the terminal configuration word bit setting is

Bit 5=1 Detect DATA SET sense.

Bit 6=1 If DATA SET sense is off, then simulate XOFF;
else set XON.)

DUPLX$ has no effect under PRIMOS 11.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

J

)

D

ERKL$$

ERKLS$$

User Terminal I/O

This routine reads or sets the user’s definitions of the erase and kill characters.

Usage

DCL ERKL$$ ENTRY (FIXED BIN, (2)CHAR, (2)CHAR, FIXED BIN);

CALL ERKLS$S (key, erase, kill, code);

Parameters

key
INPUT. The action to be taken. Possible values are

K$WRIT Set erase and kill characters.
K$READ Read erase and kill characters.

erase

INPUT or OUTPUT. With key K$WRIT, the character contained in erase(2)
replaces the user’s erase character. If erase(2) contains all zero bits, no action
takes place. On key K$SREAD, the user’s erase character is placed in erase(2).

kill
INPUT or OUTPUT. With key K$WRIT, the character contained in kill(2)

replaces the user’s kill character. If kill(2) contains all zero bits, no action
takes place. On key K$READ, the user’s kill character is placed in kill(2).

code
OUTPUT. Standard error code. Possible values are

E$OK No errors.
E$BKEY Invalid value for key.
E$BPAR Attempt to set the erase and kill characters to the same
value.
Discussion

Erase and kill characters are interpreted by commands to the operating system
and by most of the subroutines that perform terminal input. Exceptions are noted

Second Edition 3-63

ERKL$$

Subroutines Reference Ili: Operating System

Note

3-64 Second Edition

with the subroutine description. I/O facilities of all language processors are
affected.

RDASC, I$AA12, and I$AAO1 are library subroutines that read the user’s erase and kill
characters only once, when they are first invoked. Changing the erase and kill characters
after a call to those subroutines does not affect erase and kill processing in these
subroutines until the next program is invoked. The main purpose for users calling the
ERKLSS subroutine is to read or set these characters when the user programs do their
own erase and kill processing.

Under PRIMOS 11, the erase and kill characters can be read but any attempt to
set them is ignored.

The erase and kill characters can be sct at command level by the PRIMOS
TERM command. The characters are reset to default values upon an explicit
logout or login.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

J

J

 aquiTs

QUITS

User Terminal I/O

QUITS$ determines if there are pending terminal quits, and removes the record of
them. QUITS$ reads, and then clears, the bit that recorded that a CONTROL-P
was typed.

Usage

DCL QUITS$ ENTRY (FIXED BIN);

CALL QUITS (pending);

Paramelers

pending
OUTPUT. Setto Q if there are no quits pending. Set to 1 if there is a quit
pending.

Discussion

Recognition of terminal quits may be deferred if the user calls BREAKS. If
recognition of quits is deferred, and a CONTROL~P has been typed, QUITS$
returns a value of 1 in pending. If recognition of quits is not deferred, QUITS$
always returns a value of 0 in pending.

QUITS$ also removes the pending quits. You may use BREAKS and QUITS$
together as a simple way of servicing quit requests without having to use the
condition mechanism.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

Second Edition 3-65

TTYSIN

Subroutines Reference 1li: Operating System

TTYS$IN

3-66 Second Edition

This function checks whether there are any characters in the user’s TTY input
buffer. The state of the buffer is undisturbed by the call; no character is actually
read or removed from the buffer.

Usage

DCL TTYS$IN ENTRY () RETURNS (BIT(1)ALIGNED);

more_to_read = TTYS$IN ();

Parameters

more_to_read

RETURNED VALUE. True (’1°b) if there is at least one character of input
available at the terminal of the calling process, and '0’b otherwise.

Discussion

TTYS$IN is used to check if the user has typed at least one character that has not
yet been read by the process. TTYS$IN allows the program to poll for input and
perform other processing while waiting for the input to arrive. All terminal input
routines wait for a character to be typed before returning to the caller.

If TTYSIN is called in a noninteractive process, '0’b is always returned, whether
or not a command input file is active.

It is possible for TTYS$IN to return *1’b, and for a subsequent call to an input
subroutine to wait for input. This can happen if you press CONTROL-P after
TTYS$IN is called, which causes a quit to PRIMOS and the flushing of the input
buffer. When you press START, the next input request waits for a character.

Because FTN cannot call functions without arguments, this routine cannot be
called dircctly from FTN.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

J

-
r

TTYSOUT

TTYSOUT

User Terminal I/0

Check whether there are any characters in the user’s terminal output buffer for a
calling process.

Usage

DCL TTY$OUT ENTRY () RETURNS (BIT(1) ALIGNED);

tty_has_output = TTY$SOUT ();

Parameters

tty_has_output

RETURNED VALUED. True (’1°b) if there are any characters in the terminal
output buffer for the calling process. False ('0'b) otherwise.

Discussion

TTYSOUT checks whether there are any characters in the terminal output buffer
for the calling process. TTY$OUT does not affect the state or contents of the
terminal output buffer. The user can call TTY$OUT at any time.

When TTY$OUT is called by a noninteractive process, TTYSOUT always
returns *0’b, whether or not a command input file is active.

If the user presses CONTROL-P while TTY$OUT is executing, TTY$OUT
returns TRUE (’1°b), indicating that there are characters in the terminal output
buffer. In this case, the return value is incorrect, because CONTROL-P flushes
the terminal output buffer and causes a quit to PRIMOS.

It is not possible to call TTY$OUT directly from a program written in FTN,
because FTN programs cannot call functions that do not havc arguments.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

Effective for PRIMOS Revision 22.0 and subsequent revisions.

Second Edition 3-67

TTY$RS

: “N

Subroutines Reference lii: Operating System

TTY$RS

3-68 Second Edition

This routine is called to clear the user’s input and output buffers. A key is
passed that contains two bits specifying whether the input and output buffers are
to be cleared. This routine takes no action for noninteractive users (such as
phantoms and batch jobs).

Usage

DCL TTYS$RS ENTRY (FIXED BIN, FIXED BIN);

CALL TTYS$RS (key, code);

Parameters

key

INPUT. The keys indicating whether or not to clear the I/O buffers. Possible
key values are

K$OUTB Clear output buffer. -~
K$INB Clear input buffer.

code
OUTPUT. Standard error codes.

Loading and Linking Information

V-mode and I-mode: No special action. \
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

J

3

Memory Allocation

This chapter describes procedures that allow you to allocate and free blocks of

contiguous memory. This is a useful feature in many applications where either
the size or the number of data structures is not known until runtime. With help
from these procedures, the system allocates only as much memory as is needed.

The first part of this chapter lists procedures for allocating and freeing various
classes of dynamic memory. Refer to the Advanced Programmer’s Guide 111:
Command Environment for a discussion of these classes. There are pairs of
routines for allocating and freeing. Two allocation routines are provided for
user-class memory; one indicates errors by returning an error code, the other by
raising a condition. Which routine you use depends on the convenience you
want. There are also two freeing routines, with the same distinction in error
indications.

The second section of this chapter contains specific functions related to the use
of command function programs built with BIND (EPFs).

The third section of this chapter lists procedures that tell you how much memory
is available.

Most of the routines have a pointer argument. This makes them difficult to use
from FORTRAN and COBOL. These languages have no support for
pointer-based structures. Also, many routines return a short (2-halfword)
pointer. Pascal programs expect a 3-halfword pointer, which is retumed
differently. Therefore, Pascal programs will not work correctly with these
routines.

Second Edition 4-1

Subroutines Reference Ill: Operating System

General-purpose Allocate and Free Routines

4-2

Second Edition

This section describes the following subroutines:

Routine
ALOCSS
MMS$MLPA
MMS$MLPU
STR$AL
STR$AP
STR$AS
STR$AU
STRS$FP
STR$FR
STR$FS
STR$FU

Function
Allocate memory on the current stack.

Make the last page of a segment available.

Make the last page of a segment unavailable.

Allocate user-class dynamic memory.
Allocate process-class dynamic memory.
Allocate subsystem-class dynamic memory.
Allocate user-class dynamic memory.

Free process-class dynamic memory.

Free user-class dynamic memory.

Free subsystem-class dynamic memory.

Free user-class dynamic memory.

)

J

'S
-

ALOCS$S

ALOCS$S
. a2 = L] L] -] - n |]

Memory Allocation

This routine allocates an area of memory on the current procedure’s stack.

Usage

DCL ALOCSS (FIXED BIN, POINTER, BIT(1)) OPTIONS
(SHORTCALL(4));

CALL ALOCSS (block_size, block_ptr, contig_flag);

Parameters

block_size
INPUT. Number of halfwords to allocate.

block_ptr

OUTPUT. Points to allocated storage. If block_size is zero or negative,
block_ptr retums the null pointer.

contig_flag
OUTPUT. If true (’1°b), the space was allocated in an area contiguous with
the current stack. If false (CO’b), a new segment was allocated for the stack
extension.

Discussion

The memory allocated by ALOCSS is found by extending the calling
procedure’s stack frame. For this reason, the memory remains usable only until
the calling procedure returns to its own caller, at which time the memory is
automatically deallocated. The address of the allocated memory should never be
passed out to a calling procedure.

ALOCSS must be declared with the attribute OPTIONS (SHORTCALL(4)).
This makes the procedure callable only from PL/I. It could be called from PMA,
but PMA programmers will find it more convenient to use the single instruction
STEX to produce the same result as ALOC$S. SHORTCALL causes the
instruction JSXB to be used instead of the PCL instruction. JSXB does not
generate a new stack, but operates using space in the caller’s stack. This means
the procedure can only be called from a module compiled in V-mode.

Second Edition 4-3

ALOCSS

Subroutines Reference llI: Operating System

Loading and Linking Information

V-mode: No special action.
V-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

4-4 Second Edition

J

r
r

)

MM$MLPA

MM$MLPA

Memory Allocation

This routine makes the last page of a segment available.

Usage

DCL MM$MLPA ENTRY (FIXED BIN, FIXED BIN);

CALL MMS$MLPA (segment, code);

Parameters

segment

INPUT. Segment containing the page to be made available. Must be in the
range from 2048 through 4095 (octal 4000 through 7777).

code
OUTPUT. Standard error code. Possible values are

E$OK No error.
E$BSGN Segment out of range (not between 2048 and 4095).
E$NOSG Segment not in use.
E$SBDAT Page not currently out of bounds.
Discussion

MMS$MLPA cnables use of the last page of a segment that MM$MLPU made
unavailable. Refer to the MM$MLPU description for more information about
that subroutine.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

Second Edition 4-5

MM$MLPU

Subroutines Reference Ili: Operating System

MM$MLPU

4-6

Second Edition

This routine makes the last page of a segment unavailable.

Usage

DCL MMS$MLPU ENTRY (FIXED BIN, FIXED BIN);

CALL MMS$SMLPU (segment, code);

Parameters

segment

INPUT. Segment containing the page to be made unavailable. Must be in the
range from 2048 through 4095 (octal 4000 through 7777).

code
OUTPUT. Standard error code. Possible values are
E$OK No error.
E$BSGN Segment out of range (not between 2048 and 4095).
E$NOSG Segment not in use.
E$BDAT Page already in use.
E$DKFL Paging disk is full.

Discussion

When MMSMLPU makes a page unavailable, subsequent attempts to access the
page result in the OUT_OF_BOUNDSS$ condition. This could be useful for
certain memory allocation schemes.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

J)

)

J

7 STRSAL

STR$AL

Memory Allocation
This routine allocates space from dynamic memory for user-class storage. It
returns an informative error code if a problem occurs, instead of raising a
condition (as in STR$AU).
Usage
DCL STR$AL ENTRY (FIXED BIN(15), FIXED BIN(31),
FIXED BIN(15), FIXED BIN(15))
RETURNS(POINTER) OPTIONS(SHORT);
block_ptr = STRS$AL (reserved, block_size, reserved, code);
Parameters
reserved
INPUT. This field must have a value of zero (0).
block_size
INPUT. The size of the block to allocate, in halfwords.
reserved
INPUT. This field must have a value of zero (0).
code
OUTPUT. Standard error code. Possible error codes are
E$SOK No error
E$ALSZ Invalid block_size
E$ROOM Insufficient space
E$SHPER Corrupt heap
block_ptr
RETURNED VALUE. The pointer to the allocated space.
Loading and Linking Information
V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.
R-mode: Not available.
Second Edition 4-7

STR$AP

Subroutines Reference Ill: Operating System

STR$AP

4-8

Second Edition

This routine allocates space from process-class storage. If any errors are
detected, an appropriate error message is displayed and a condition is signalled.

Usage

DCL STR$AP ENTRY (FIXED BIN(31))
RETURNS(POINTER) OPTIONS(SHORT);

block_ptr = STRSAP (block_size);

Parameters

block_size
INPUT. The size of the block to allocate, in halfwords.

block_ptr
RETURNED VALUE. Pointer to the allocated space.

Discussion

If any errors are detected, STR$AP signals the condition
SYSTEM_STORAGES. The default action taken by the system is then to
reinitialize the user’s command environment.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.
R-mode: Not available.

~

7 STRs$AS

Note

STRS$AS

Memory Allocation

This routine allocates space from dynamic memory for subsystem-class storage.

If any errors are detected, an appropriate error code is returned.

Use STRS$AS to allocate dynamic memory space for subsystems supplied by Prime only.

Usage

DCL STR$AS ENTRY (FIXED BIN(31), FIXED BIN(15))
RETURNS(POINTER) OPTIONS(SHORT);

block_ptr = STRS$AS (block_size, code);

Parameters

block_size
INPUT. The size (in halfwords) of the block to allocate.

code
OUTPUT. Standard error code. Possible error codes are

E$OK No error

E$SBPAR Invalid value for block_size
ESROOM Insufficient space
ESNSUC Corrupt heap

block_ptr
RETURNED VALUE. Pointer to the allocated space.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: L.oad NPFTNLB.

R-mode: Not available.

Second Edition

4-9

STR$AU

Subroutines Reference llI: Operating System

STR$AU

4-10 Second Edition

This routine allocates space from dynamic memory for user-class storage. If an
error occurs, a condition is raised.

Usage

DCL STR$AU ENTRY (FIXED BIN(31))
RETURNS(POINTER) OPTIONS(SHORT);

block_ptr = STR$AU (block_size);

Parameters

block_size
INPUT. Size of the block to allocate (in halfwords).

block_ptr
RETURNED VALUE. Pointer to the allocated space.

Discussion

When a bad block_size is given, this routine raises the ERROR condition. When
not enough space can be found in the heap, the routine raises the STORAGE
condition. When the heap is found to be corrupted, it raises the
HEAP_ERRORS condition.

Loading and Linking Information

V-mode and I-modc: No spccial action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

J

-~

7 STRSFP

)

STR$FP

Memory Allocation

This routine returns space to process-class storage. If any errors are detected, an
appropriate error message is displayed and a condition is signalled.

Usage

DCL STRS$SFP ENTRY (POINTER) OPTIONS(SHORT);

CALL STRS$FP (block_ptr);

Parameters

block_ptr
INPUT. Pointer to the allocated space.

Discussion

If any errors are detected, STR$FP signals the condition SYSTEM_STORAGES.
The default action taken by the system is then to reinitialize the user’s command
environment.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

Second Edition 4-11

STR$FR

Subroutines Reference lil: Operating System

STR$FR

4-12 Second Edition

This routine returns space to user-class storage. If any errors are detected, an

error code is retumed (instead of an error condition as with STR$FU).

Usage

DCL STRS$FR ENTRY (FIXED BIN(15), POINTER, FIXED BIN(15));

CALL STRS$FR (reserved, block_ptr, code);

Parameters

reserved
INPUT. Reserved.

block_ptr
INPUT. Pointer to the storage space to be freed.

code
OUTPUT. Standard error code. Possible error codes are

E$OK No error

ES$FRER Invalid free request

E$HPER Corrupted heap
Discussion

For performance reasons, PRIMOS deallocates fully allocated segments
immediately and deallocates partially allocated segments at program
termination.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.
R-mode: Not available.

J

J

STR$FS

’ Memory Allocation

M STR$FS

This routine returns space to subsystem-class storage. If any errors are detected,
an appropriate error code is returned.

Usage

DCL STRS$FS ENTRY (POINTER, FIXED BIN(15));

CALL STRSFS (block_ptr, code);

’.. Parameters

block_ptr
INPUT. Pointer to the allocated space.

code
OUTPUT. Standard error code. Possible error codes are

E$OK No error
r ES$FRER Invalid free request
ESNSUC Corrupted heap

Loading and Linking Information

V-mode and I-mode: No special action.
r V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

Second Edition 4-13

3

STR$FU

Subroutines Reference lil: Operating System

STR$FU

4-14 Second Edition

This routine returns space to user-class storage. If an error occurs, a condition is
raised.

Usage

DCL STR$FU ENTRY (POINTER);

CALL STRS$FU (block_ptr);

Parameters

block_ptr
INPUT. Pointer to block of data to free.

Discussion

When a bad block_ptr is passed, it raises the ERROR condition. When the heap
is found to be corrupted, it raises the HEAP_ERRORS condition.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.
R-mode: Not available.

4 J

J J

r Memory Allocation

- Command Function Returned Data Routines

This section describes the following subroutines:

Routine Function

ALCS$RA Allocate space for EPF function return information.

ALSSRA Allocate space and set value of EPF function return information.
FRESRA Deallocate space for EPF function return information.

r_ Second Edition 4-15

ALC$RA

Subroutines Reference Ill: Operating System

ALC$RA

Note

4-16 Second Edition

This routine allocates space for EPF (Executable Program Format) function
return information.

This interface requires the caller to perform pointer-based operations. FORTRAN or
COBOL programs should use the ALS$SRA subroutine.

Usage

DCL ALC$RA ENTRY (FIXED BIN(31), POINTER);

CALL ALCS$RA (space_needed, rtn_fcn_ptr);

Parameters

space_needed

INPUT. The total amount of space needed for the rcturn structure (in 16-bit
halfwords). It is the sum of the space needed for the return value and the
structure version number. See below for the layout of the return structure.

rtn_fcn_ptr
OUTPUT. The pointer to the information to be returned by the function.

Discussion

When a function returns information, it passes the data to the caller via an
assignment statement. For an EPF (Executable Program Format) to do this, it
must create an indirect pointer and a storage area, so that when the data is
returncd at execution time it can be stored and accessed by the caller of the
function. In order to pass such information to the operating system, an interface
(given in the discussion below) defines rtn_fcn_ptr and rtn_fen_struc.

ALCS$RA provides you the space for rtn_fen_struc; it also returns the value for
rtn_fen_ptr, which you can then pass back to the caller of the EPF function.

Refer to the Advanced Programmer’s Guide I11: Command Environment for a
detailed discussion of the following interface.

When using dynamic storage allocation, an EPF program acting as a function
(that is, passing back some result to the operating system) must first have the
following interface defined.

))

J

3

ALCSRA

Memory Allocation

DCL your epf ENTRY(CHAR(1024) VAR, FIXED BIN(15),

1, 2 CHAR(32) VAR,
2 FIXED BIN(15),

2 PTR,
2 FIXED BIN(15), /* Rev. 21.0 */
2, 3 FIXED BIN(31),

FIXED BIN(31),
FIXED BIN(31),
FIXED BIN(31),
BIT (1),

BIT (1),

BIT (1),
BIT(1),

BIT (1),

BIT (11),

BIT (1),
BIT(1l),

BIT (14),

FIXED BIN(15),
FIXED BIN(15),

WWWWWWwWwWwwWwWwWwWwwWwWwWwwwwwwwww

BIT (1),
BIT (1),
BIT (1),
BIT (13),
FIXED BIN(31l), /* Rev. 21.0 */
FIXED BIN(31), /* Rev. 21.0 */
FIXED BIN(31), /* Rev. 21.0 */
FIXED BIN(31l), /* Rev. 21.0 */

1, 2 BIT(1),
2 BIT(1S),
PTR) ;

CALL your_ epf (command args, command_status,

command_state, command_fcn flags,
rtn fen ptr);

This interface is appropriate for Rev 21.0 and subsequent revisions. Users of
PRIMOS revisions prior to 21.0 should set the version argument to 1 and omit
the fields indicated. The arguments are defined as follows:

command_args

command_status

The entire command line as entered by the user.

The command status returned by the program to
the operating system:

=0 No error
>0 Fatal error
<0 Soft error or warning

Second Edition 4-17

ALC$RA

Subroutines Reference Ill: Operating System

4-18 Second Edition

command_state
command name
version
vcb_ptr

vcb_ptr_ext

preprocessing_info

mod_after_date

mod_before_date

bk after date

bk_becfore_date

type_dir
type_scgdir
type_file
type_acat
type_rbf

resl

verify_sw

botup_sw

Information relative to this invocation. It
contains, in the order specified:

Command entered by user.

Current version of the structure of the
command state (1 at Rev. 20.2; 2 at Rev. 21.0
and subsequent revisions).

Pointer to CPL local variables.

Extension to the vcb_ptr. This field is used
only for Rev. 21.0 and subsequent revisions.

Information relating to what has been
preprocessed:

If nonzero, then the command processor
has found somecthing modified after the
given date.

If nonzero, then the command processor has
found something modified before the given
date.

If nonzero, then the command processor has
found something backed up after the given
date.

If nonzero, then the command processor has
found something backed up before the
given date.

If nonzero, a directory has been found that
matches a wildcard.

If nonzero, a segment directory has been
found that matches a wildcard.

If nonzero, a file has been found that
matches a wildcard.

If nonzero, an access category has been
found that matches a wildcard,

If nonzero, a recovery-based file has been
found that matches a wildcard.

11 bits with undefincd values.

If nonzero, the —VERIFY option has been
given.

A full treewalk was performed before
executing program.

J)

J

ALCS$RA
s 8 = = 8 8 ® 8 == 8

Memory Allocation

res2 14 bits with undefined values.
walk_from Tree level at which the present treewalk
started.
walk_to Present treewalk level.
in_iteration If nonzero, the command processor is
currently in an iteration sequence.
in_wildcard If nonzero, the command processor is
currently in a wildcard sequence.
in_treewalk If nonzero, the command processor is
currently in a treewalk sequence.
res3 13 bits with undefined values.
created_after_date If nonzero, then the command processor has
found something created after the given
date. This field is used only for Rev. 21.0
and subsequent revisions.
created_before_date If nonzero, then the command processor has
found something created before the given
date. This field is used only for Rev. 21.0
and subsequent revisions.
accessed_after _date If nonzero, then the command processor has
found something accessed after the given
date. This ficld is used only for Rev. 21.0
and subsequent revisions.
accessed_before_date If nonzero, then the command processor has
found something accessed before the given
date. This field is used only for Rev. 21.0
and subsequent revisions.
command_fcn_flags Information relative to this command function
invocation. Its contents in the order specified:
command_fcn_call If nonzero, this program has been called as a
command function.
reserved 15 bits with undefined values.
rtn_fcn_ptr Pointer to a structure that describes the values

returned to the caller of the EPF function. This
structure is itself defined as:

DCL 1 rtn fcn struc,
2 version FIXED BIN(15),
2 value_str CHAR(*) VAR;

Second Edition 4-19

ALC$RA

Subroutines Reference lll: Operating System

4-20 Second Edition

version Structure’s version (see following discussion).

value_str String of 1 to 32767 characters holding the
value to be returned.

First obtain the value of rtn_fcn_ptr by calling ALCSRA (or ALS$RA). After the
call to ALC$RA, your program must set the version number of rtn_fcn_struc to
0 and copy the value of that structure into value_str. Then the interface sets
rtn_fen_ptr in its main entrypoint’s calling sequence and returns to the calling
program. Refer to the Advanced Programmer’s Guide IlI: Command
Environment for a further discussion of ALC$RA and ALS$RA.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

“N
N\

r
~

ALS$RA

ALS$RA
a a [] - [] L] L]] L] L]

Memory Allocation

This routine is used both to allocate space from process-class storage for EPF
(executable program format) function return information and to set the value of
the information. It also assigns the value 0 to the version number within the
return function structure. See rtn_function_addr below.

Usage

DCL ALS$SRA ENTRY (CHAR(*), FIXED BIN(31), POINTER);

CALL ALSS$RA (function_result_str, char_size_of str, rtn_function_addr);

Parameters

Junction_result_str

INPUT. The character string that is the result of the program invoked as a
function. The string can contain up to 8192 characters.

char_size_of str
INPUT. The number of characters in function_result str.

rtn_function_addr

OUTPUT. The address allocated to ren_fcn_struc. The structure itself has this
format:

1 rtn_fen_struc,
2 version FIXED BIN(1l5),
2 value_str CHAR(*) VAR;

Discussion

The address is returned as a pointer to the EPF function that called ALS$RA; the
calling function then stores it for future use.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

Second Edition 4-21

FRE$RA

Subroutines Reference lll: Operating System

FRE$RA

This routine deallocates the space designated for the information from the EPF
(executable program format) functions. After processing the information
returned from functions, the invoker should call this routine to free up space
and maintain an efficient command environment.

Usage

DCL FRESRA ENTRY (POINTER);

CALL FRES$RA (rtn_function_ptr);

Parameters

rin_function_ptr

INPUT. Pointer to the space set aside for EPF functions, earlier allocated by
ALCSRA or ALS$RA.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

4-22 Second Edition

)

Memory Allocation
r Informational Routines
This section describes the following subroutines:
Routine Function
DY$SGS Return maximum number of dynamic segments.
ST$SGS Return maximum number of static segments.
TL$SGS Return highest segment number.

’. Second Edition 4-23

DY$SGS

Subroutines Reference lil: Operating System

DY$SGS

This routine is one of several that retrieve EPF-related information from the
in-memory copy of the user’s profile. This routine retrieves the maximum
number of private, dynamic segments allocated to the user.

Usage

DCL DYS$SGS ENTRY () RETURNS (FIXED BIN(15));

maximum_private_dynamic_segs = DY$SGS ();

Parameters

maximum_private_dynamic_segs

RETURNED VALUE. The maximum number of private dynamic segments
allocated to the user.

Discussion

This function cannot be called from FTN because it has no parameters.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

4-24 Second Edition

J

J

'
-

ST$SGS

ST$SGS

Memory Allocation

This routine is one of several that retrieve EPF-related information from the
in-memory copy of the user’s profile. This routine retrieves the maximum
number of private, static segments allocated to the user.

Usage

DCL ST$SGS ENTRY () RETURNS (FIXED BIN(15));

maximum_private_static_segs = ST$SGS ();

Parameters

maximum_private_static_segs

RETURNED VALUE. Maximum number of private static segments allocated
to the user.

Discussion

This function cannot be called from FTN because it has no parameters.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

Second Edition 4-25

TL$SGS

Subroutines Reference Ill: Operating System

TL$SGS

This routine is one of several that retrieve EPF-related information from the
in-memory copy of the user’s profile. This routine retrieves the number of the
highest segment that can be allocated to the user.

Usage

DCL TL$SGS ENTRY () RETURNS (FIXED BIN);

maximum_private_seg = TL$SGS ();

Parameters

maximum_private_seg

RETURNED VALUE. Segment number of the highest private segment that
can be allocated to the user.

Discussion

Private segments are allocated from the range 4000 through 5777 octal (from
2048 through 3071 decimal). Therefore, to determine how many segments can
be allocated in this range, subtract 2047 from maximum_private_seg.

This function cannot be called from FTN because it has no parameters.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.
R-mode: Not available.

4-26 Second Edition

J

J

Program Control

The first part of this chapter contains routines of general use in controlling the
user’s command environment and terminating programs.

The second part of this chapter contains routines used for controlling static-mode
programs.

The third part of this chapter contains routines used for controlling phantom
processes. A phantom is a process that can operate separately from its creator
process, and can continue working after the creator has logged out. Phantoms are
discussed in detail in the PRIMOS User’s Guide.

Several of the routines described here operate by raising (signalling) conditions.
The information about these conditions is of use to designers of complex
subsystems that communicate between programs. The condition mechanism is
described in Chapter 7.

Recursive Command Environment

The recursive command environment provides a fully recursive command
processing loop that is also highly modular. The implementation of this
environment divides system and user software into two categories: static mode
and recursive mode.

Static-mode software

e Allocates its own segments
e Manages its own stack
¢ Manages its own shared libraries’ initialization

¢ Uses a “‘memory image” approach; the program is rcloaded each time it is
called and thus programs cannot be recursively invoked from command
level

Second Edition 5-1

Subroutines Reference lll: Operating System

Recursive-mode software

e Uses the system stack
e Terminates by returning to the calling procedure
e Does not attempt to initialize shared libraries

¢ s not reloaded as a memory image cach time it is called

User on-units, any procedures they call, and all internal commands are
recursive-mode software.

A recursive-mode procedure should terminate by returning, not by calling EXIT.
Arguments for recursive-mode commands are passed as parameters and are not

obtained from a static buffer. Error information is passed by setting a retum ,\
parameter (error code), printing an error message and returning, or by signalling

a condition. The ERRRTN call must not be used. ERSPRINT can be used with

any of its three valid keys; see the discussion with the routine description in

Chapter 3. Recursive-mode programs and library routines are implemented as

Executable Program Format (EPF) files. Executable Program Format is

discussed in detail in Subroutines Reference Il : File System and in the Advanced
Programmer’s Guide I: BIND and EPFs.

Phantom Processes and Logout Notification

5-2

Second Edition

A phantom is a process that can operate separately from its creator process, and
can continue working after the user has logged out. Phantoms are discussed in
detail in the PRIMOS User’s Guide.

Logout Notification for Phantoms \

Logout notification provides the creator of a phantom process with information
about the phantom’s activities. This information is compiled at phantom logout
time and sent to the creator. This is known as notification.

Normally, the information will be displayed at the creator’s terminal. The
information contains the phantom’s user number, the time of day of logout, the
elapsed time, CPU time, I/O time spent by the phantom, and an error code
indicating normal or abnormal logout. Normal logout occurs when a phantom
completes with a LOGOUT command. All other logouts will generate abnormal
logout.

Logout information will be compiled at this time and sent to the creator. If a user

is logged in as more than one process, the information will be sent only to the

process from which the phantom was created. If the creator of the phantom has

logged out while the phantom was running, the information will not be sent. This ‘\

~

3

3

Program Control

means that once a user has logged out, the phantom will not notify the user of
logout even if the user logs back in.

Sometimes it becomes necessary for a user to record the phantom logout
information via a program. The logout notification system provides two
subroutines that allow for this event. The first subroutine, LONSCN, allows a
user to turn logout notification off or on. The second subroutine, LONS$R, allows
a user to fetch phantom logout information instead of having the information
written (o a terminal.

When LONSCN is called to tumn off logout notification, phantom logout
information is automatically queued for future access. This allows users to turn
off logout notification without having to worry about either the condition of their
terminal screen or the loss of the status of their phantoms.

When LONSCN is requested to turn on logout notification, any pending logout
information is written to the user’s terminal.

As mentioned above, a user may fetch phantom logout information by invoking
LONS$R. Normally, logout notification is enabled, and invoking LON$R will
have no effect. Therefore, when using LONS$R, logout notification should be
turned off by invoking LONSCN.

When logout notification occurs, a system default condition handler or on-unit
named PH_LOGOS is invoked to write the information upon the creator’s
terminal. This on-unit is also invoked when LONSCN is requested to turn on
logout notification. Users who do not ever wish to see logout information written
upon their terminal should create their own on-unit for PH_LOGOS. This
user-defined PH_LOGOS$ will usually call LON$R to fetch phantom logout
information.

Second Edition 5-3

Subroutines Reference lil: Operating System

Command-level Control Routines

54 Second Edition

This section describes the following subroutines:

Routine
CMLVS$E
COMLV$
EXIT
ICE$
KLMS$IF
SETRC$
SS$ERR

Function

Call a new command level after an error.
Call a new command level.

Return to PRIMOS.

Initialize the command environment.
Retum serialization data.

Record command error status.

Signal an error in a subsystem.

J

" CMLVSE

CMLVSE

Program Control

This routine causes a new command level to be called after an error occurs.

Usage

DCL CMLVS$E ENTRY;

CALL CMLVSE;

Parameters

There are no parameters.

Discussion

When CMLV$E is called, a PRIMOS routine called the command listener does
the following: it pauses command input, displays the error prompt, waits for
input, forces terminal output on, and enables quits. The CMLVS$E subroutine
returns to the caller only after you issue a START command from the new
command level.

Compare this to COMLVS$, which should be called to perform similar functions
in situations where there has not been an error.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.
R-mode: Not available.

Second Edition 55

COMLVS

Subroutines Reference lll: Operating System

COMLV$

5-6

Second Edition

This routine causes a new command level to be called.

Usage

DCL COMLV$ ENTRY;

CALL COMLYVS;

Parameters

There are no parameters.

Discussion

When COMLVS is called, a PRIMOS routine called the command listener
displays the ready prompt and waits for input. Only after you issue the START
command from that command level will the COMLV$ subroutine retumn to the
caller.

Compare CMLVS$E, which should be called to perform similar functions in error
situations.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB,
R-mode: Not available.

J

\

J

EXIT
L] . . . 8 . [] L] - []

Program Control

This routine provides a way to return from a user program to the PRIMOS
command processor.

Usage

DCL EXIT ENTRY;

CALL EXIT;

Parameters

There are no parameters.

Discussion

EXIT is intended for use from a static-mode program. EPF (Executable Program
Format) programs should terminate by using the RETURN statement in the main
program, but may call EXIT if desired. For example, it may be convenient to
call EXIT to terminate the program from a subroutine many call levels deep. In

EPF programs, CALL EXIT is much less efficient than using a RETURN.

When EXIT causes a return to the command level, the PRIMOS command
processor prints the ready prompt (initially OK, or OK:) at the terminal and
awaits a user command. If EXIT is called from a static-mode program, the user
may open or close files or switch directories, and restart a program at the next
statement by typing S (START). If EXIT is called from an EPF, it signals the
STOPS$ condition and disables continuation using the START command.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

Second Edition 5-7

ICE$

Subroutines Reference lil: Operating System

ICE$

Caution

5-8 Second Edition

This routine initializes the command environment.

Usage

DCL ICES$ ENTRY (CHAR(80) VAR, FIXED BIN(15));

CALL ICES (args, code);

Parameters

args

Command arguments. You may specify —SERVER, or a null argument. Any
argument other than —SERVER is treated as a null argument, and no error is
returned.

code

The standard error code. Error codes are never returned to the user, because
the call to ICE$ terminates the calling program.

Avoid using ICE$! It may affect the integrity of subsystems, including Prime data
management products. CLEANUPS$ on-units on the stack are not invoked.
Consequently, it should be used only when the stack has clearly been damaged.

Discussion

ICES$ resets your environment to its initial state. When specified with no
arguments, ICES closes all open files, including the command output file and the
current program file, resets search rule lists to the system defaults, and
deallocates all user resources, such as private dynamic and static segments,
virtual circuits, buffers, and slave processes.

Beginning at Rev. 22.0, ICE$ also releases all semaphores and RJE devices,
resets Information echo delay, releases all assigned devices (except when called
by User 1), resets the erase & kill characters to the default, enables terminal
output, and enables messages. ICE$ does not reset server names.

When specified with the -SERVER argument, ICE$ performs all of the
operations listed above, and in addition closes all ISC sessions, reinitializes the
server’s SessionRequestPending synchronizer, logs out all child processes of the
caller, and deletes all timers and synchronizers. When ICE$ with the ~-SERVER
argument is called by a child process, the -SERVER argument is ignored.

J

J

J

ICE$

Program Control

The program that calls ICES$ is terminated. If you are working in a subdirectory
when ICES$ is executed, you are returned to your origin directory.

Programs using pre-Rev. 22.0 versions of ICE$ do not need to be modified for
use with Rev. 22.0.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

Second Edition 5-9

KLMS$IF

Subroutines Reference lll: Operating System

KLMSIF

5-10 Second Edition

This routine enables a program to obtain serialization data from a specified file.

Usage

DCL KLMSIF ENTRY (CHAR(*)VAR, POINTER, POINTER,
POINTER, POINTER, POINTER,
FIXED BIN);

CALL KLMSIF (pathname, std_info_ptr, cmp_info_ptr, dst_info_ptr,
ins_info_ptr, doc_info_ptr, code);

Parameters

pathname
INPUT. Specifies the name of the file for which serialization information will
be returned. The Discussion section contains more information about this
parameter.

std_info_ptr
INPUT — OUTPUT. Pointer to the structure that will contain standard
information. The data area for the information returned must be at least 75
halfwords long.

cmp_info_ptr
INPUT —> OUTPUT. Reserved; must be a null pointer.

dst_info_ptr
INPUT —> OUTPUT. Pointer to the structure that will contain distribution
information. A null pointer can be specified if distribution information is not
required. The data area for the information returned must be at least 28
halfwords long.

ins_info_ptr
INPUT —> OUTPUT. Reserved; must be a null pointer.

doc_info_ptr
INPUT —> OUTPUT. Reserved; must be a null pointer.

KLMS$IF

3

Program Control

r code

OUTPUT. Standard error code. Possible values are

E$OK No error.

E$BNAM Illegal pathname specified.

ESNTFD Pathname identifies an illegal file type.
ESNDAM EPF specified is not a DAM file.

E$FNTS Segment 0 file not found in segment directory.
E$BVER Unsupported structure version number.
E$BPAR Null pointer specified for the parameter std_info_ptr.

Structure Description

The parameter std_info_ptr points to the structure ki_standard_info, shown
below.

DCL 1 ki_standard info,

ki version FIXED BIN,

ki_product name CHAR(20) VAR,
ki_revision CHAR(20) VAR,

ki serial number CHAR(20) VAR,

ki licensee CHAR(40) VAR,
ki_expiry date FIXED BIN(31),

ki primos base_rev CHAR(10) VAR,
ki_library base_rev CHAR(10) VAR,
ki_ucode base_rev CHAR(10) VAR;

NN NMNRNNDDDNDN

ki_version
‘, INPUT. Version number of this structure. Must be set to 1.

ki_product_name
OUTPUT. Name of the product.

ki_revision
OUTPUT. Revision of the product.

ki_serial_number
OUTPUT. Serial number of the product.

ki_licensee
OUTPUT. Name of licensed user of product.

P Second Edition 5-11

KLMS$IF

Subroutines Reference Ill: Operating System

5-12 Second Edition

ki_expiry_date

OUTPUT. Software expiration date, in file-system date format. File-system
date format is described in Appendix C.

ki_primos_base_rev
OUTPUT. The earliest revision of PRIMOS that supports this product.

ki_library_base_rev
OUTPUT. The earliest library revision that supports this product.

ki_ucode_base_rey
OUTPUT. The earliest microcode revision that supports this product.

The parameter cmp_info_ptr is a null pointer to a structure that is currently
reserved.

The parameter dst_info_ptr points to the structure ki_distribution_info, shown
below.

DCL 1 ki distribution info,

ki organization CHAR(20) VAR,
ki_individual CHAR(6) VAR,

ki issue_date FIXED BIN(31),
ki_order number CHAR(8) VAR,
ki_csm number CHAR(10) VAR;

NNDNDDNN

ki_organization
OUTPUT. Name of the organization distributing the software.

ki_individual
OUTPUT. Name of the individual responsible for software distribution.

ki_issue_date

OUTPUT. Software distribution date, in file-system date format. File-system
date format is described in Appendix C.

ki_order_number
OUTPUT. Order number of the distributed software.

ki_csm_number
OUTPUT. Customer service maintenance number for the product license.

The parameter ins_info_ptr is a null pointer to a structure that is currently
reserved.

KLMSIF

Program Control

The parameter doc_info_ptr is a null pointer to a structure that is currently
reserved.

Discussion

KLMSIF can use a simple filename, supplied by a program, and system search
rules to obtain serialization data from an installed product (in CMDNCO) of that
name. By specifying the full or relative pathname, a program can obtain
serialization data from any file on the system.

Loading and Linking Information

V-mode and I-mode shared: Not available. Use the unshared version.
V-mode and I-mode with unshared libraries: Link with LIB>KLMS$IF.

R-mode: Not available.

Effective for PRIMOS Revision 21.0 and subsequent revisions.

Second Edition 5-13

SETRCS$

Subroutines Reference Ill: Operating System

SETRC$

5-14 Second Edition

This routine returns to the system a user-specified status code when the calling
program exits.

Usage

DCL SETRC$ ENTRY (FIXED BIN [, BIT(1)ALIGNED]);

CALL SETRCS (severity_code [, abort_flag]);

Parameters

severity_code
INPUT. The severity code to retumn to the invoker of this program.

abort_flag
OPTIONAL INPUT. Value is ’1’b if the command file (if any) is to be
aborted, and '0’b if it is not to be aborted. (This flag will make no difference
if this command was invoked by a CPL procedure.)

Discussion

SETRCS records the code that you specify as severity code. Later, when the
program exits, the system regards this code as the error status. SETRCS$ does not
cause an immediate return to the calling software.

If severity_code is less than or equal to 0, then abort_flag is ignored, and the
command file is never aborted. If severity code is greater than 0, and abort_flag
is omitted or ’0’b, the condition SETRCS is signalled. The default on-unit for
SETRCS records the occurrence of the event and returns. SETRCS is intended
for use from static-mode programs only. EPF (Executable Program Format)
programs set the status code by using an output parameter.

When an EPF sets a static mode error code (either by calling a static mode
program, or by calling SETRC$) the PRIMOS prompt that appears when the
EPF exits reflects the more severe of the two codes — the static mode error code
or the EPF’s program status code. Thus, a static mode error overrides a program
status warning.

)

)

)

SETRCS$

Program Control

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

Second Edition 5-15

SS$ERR

Subroutines Reference llI: Operating System

SS$ERR

5-16 Second Edition

This routine signals an error in a subsystem. It is intended to terminate the
program immediately if it is invoked from a command input file.

Usage

DCL SS$ERR ENTRY;

CALL SS$ERR;

Parameters

There are no parameters.

Discussion

If a command input file is active, the condition SUBSYS_ERRS is raised.
Raising this condition usually results in the termination of the caller by means of
a nonlocal GOTO back to the command processor. If you are using the program
interactively, SS$ERR simply returns.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

)

J

r Program Control

r Static-mode Save and Restore Routines

This section describes the following subroutines:

Routine Function

REST$S Restore an R-mode executable image.

RESUS$$ Restore and resume an R-mode executable image.
SAVES$$ Save an R-mode executable image.

Second Edition 5-17

)

RESTS

Subroutines Reference Ill: Operating System

REST$$

This routine reads R-mode executable code into memory from a file in the
current directory.

Usage

DCL REST$$ ENTRY ((9)FIXED BIN, CHAR(*), FIXED BIN,
FIXED BIN);

CALL RESTSS (vector, filnam, namlen, code);

Parameters

vector

OUTPUT. A nine-halfword array set by REST$$. vector(1) is set to the first
location in memory to be restored. vector(2) is set to the last location to be
restored. The array is set as follows:

vector(1) Set to first location in memory to be restored
vector(2) Set to last location in memory to be restored
vector(3) Saved P register
vector(4) Saved A register
vector(5) Saved B register
vector(6) Saved X register
vector(T) Saved keys
vector(8) Not used
vector(9) Not used
Sfilnam

INPUT. The name of the file containing the executable image.

namlen
INPUT. The length in characters (1-32) of filnam.

code
QUTPUT. Standard error code.

5-18 Second Edition

J

Note

REST$$

Program Control

Discussion

The saved parameters for a file previously written to the disk by the SAVES$$
routine, the SAVE command, or the SAVE subcommand of the R-mode loader,
are loaded into the nine-halfword array vector. The code itself is then loaded into
memory using the starting and ending addresses provided by vector(1) and
vector(2).

Use the PRIMOS command SEG to restore scgmented V-mode runfiles from a segment
directory. Use the PRIMOS command RESUME, or the EPF (Executable Program
Format) handling routines described in Subroutines Reference I1: File System, to restore a
runfile from an EPF file.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.
R-mode: No special action.

Second Edition 5-19

RESU$$

Subroutines Reference lll: Operating System

RESU$$

Note

5-20 Second Edition

This routine restores R-mode executable code from a file in the current directory,
initializes registers from the saved parameters, and starts executing the program.

Usage

DCL RESU$$ ENTRY (CHAR(*), FIXED BIN);

CALL RESUS$S (filnam, namlen);

Parameters
filnam
INPUT. The name of the file containing the code.

namlen
INPUT. The length in characters (1-32) of filnam.

Discussion

RESUS$$ does not have a code argument. If an error occurs, an error message is
displayed and control returns to command level.

Use the PRIMOS command SEG to restore segmented V-mode runfiles from a segment
directory. Use the PRIMOS command RESUME, or the EPF (Executable Program
Format) handling routines described in Subroutines Reference I1: File System, to restore
arunfile from an EPF file.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

J

)

SAVES$

Program Control

SAVES$S
This routine saves an R-mode executable image as a file in the current directory.
Usage
DCL SAVE$$ ENTRY ((9)FIXED BIN, CHAR(*), FIXED BIN,
FIXED BIN);
CALL SAVESS (vector, filnam, namlen, code);
l o Parameters
vector
INPUT. A nine-halfword array the user sets up before calling SAVESS.
vector(1) is set to an integer that is the first location in memory to be saved
and vector(2) is set to the last location to be saved. The array is set at the
user’s option and has the following meaning:
vector(1) Set to an integer that is the first location in
f‘ memory to be saved
vector(2) Set to last location to be saved
vector(3) Saved P register
vector(4) Saved A register
vector(S) Saved B register
vector(6) Saved X register
‘ vector(T) Saved keys
vector(8) Not used
vector(9) Not used
filnam

INPUT. The name of the file to contain the code.

namlen
INPUT. The length in characters (1-32) of filnam.

code
OUTPUT. Standard error code.

Second Edition 5-21

A

SAVESS$

Subroutines Reference 1ll: Operating System

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries:

R-mode: No special action.

5-22 Second Edition

Load NPFTNLB.

J)

J

f Program Control

Phantom Process Control Routines

This section describes the following subroutines:

Routine Function

LONSCN Switch logout notification on or off.
LONS$R Read logout notification information.
PHNTMS$ Start a phantom process.

r Second Edition 5-23

LONSCN

Subroutines Reference lll: Operating System

LONS$CN

This routine is used to turn off, or turn on, logout notification.

Usage

DCL LON$CN ENTRY (FIXED BIN);

CALL LONSCN (key);

Parameters

key
INPUT. Software interrupt status key:

0 Notify off
1 Notify on

Discussion

When notification is turned off, phantom logout information is queued
(first-in/first-out). When notification is turned on, queuing is not performed, but
if there is any logout notification data to be received, the default condition,
PH_LOGOS, is raised. See the discussion of LON$R for more information.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: IL.oad NPFTNLB.

R-mode: Not available.

5-24 Second Edition

LONS$R

LONS$R

Program Control

This routine fetches or transfers logout information from storage to a designated
target area; it will do this unless it finds no information to transfer.

Usage

DCL LON$R ENTRY (POINTER, FIXED BIN, BIT, FIXED BIN);

CALL LONSR (msgptr, msglen, more, code);

Parameters

msgptr
INPUT —> OUTPUT. Area of memory in which to store the message. Its
format is shown in the Discussion section.

msglen
INPUT. Length of area in which to store message.

more
OUTPUT. Standard code.

0 No messages left on queue

1 Message left on queue

code
OUTPUT. Standard error code.

E$OK No error
ESNDAT No data found in queue
E$BFTS Some information lost during transfer (msglen less than
actual message length)
Discussion

The target area is designated by the argument msgptr. The size of the area
pointed to by msgptr is designated by the argument msglen. The area should be
at least six halfwords in length. If it is shorter than this, LON$R will only fetch
as much information as msglen can hold.

Second Edition 5-25

LONSR

Subroutines Reference lll: Operating System

5-26 Second Edition

The format of the target area is as follows:

Halfword Number
1
2
3

Information
Phantom’s user number (FIXED BIN(15))
Time of logout (FIXED BIN(15))

Connect (elapsed) time in minutes (FIXED
BIN(15))

CPU time in seconds (FIXED BIN(15))
I/O time in seconds (FIXED BIN(15))
Logout condition code (FIXED BIN(15)):
0 — Normal logout

1 — Abnormal logout

LONSR also passes back to its caller an indication whether there have been more
phantom logouts with their information stored in a queue. This indication is
contained within the argument more.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

J

J

h)

PHNTMS$

Program Control

PHNTMS$

This routine allows a process to start a phantom using either a command input
file or a CPL file.

Usage

DCL PHNTM$ ENTRY (FIXED BIN, CHAR(32), FIXED BIN,
FIXED BIN, FIXED BIN, FIXED BIN,
CHAR(128), FIXED BIN);

CALL PHNTMS (cplflg, filename, name_len, funit, phant_user, code, args,
args_len);

Parameters

cplfig
INPUT. Source of the process: if 1, then a CPL program is being started as a
phantom,; if O, then a command input file is being started as a phantom.

filename

INPUT. The name of the file to be started as a phantom. The filename must
end in .CPL if the program is a CPL program. Use the .CPL suffix for CPL
programs only; non-CPL programs must not have a .CPL suffix.

name_len
INPUT. The number of characters in filename.

Sunit
INPUT. The file unit on which to open the phantom file. This argument is
used only by COMI phantoms. CPL phantoms ignore this argument. Valid
file unit numbers range from 1 through 128.

phant_user
OUTPUT. The user number of the phantom.

code
OUTPUT. Standard error code. The possible values are

E$OK The call to PHNTM$ was completed without error.
E$BUNT The funit value was not within the valid range (1-128).

Second Edition 5-27

PHNTM$

Subroutines Reference I1l: Operating System

args

INPUT. The arguments for a CPL phantom; a dummy argument must be given
for non-CPL phantoms.

args_len

INPUT. The number of characters in args; a dummy argument must be given
for non-CPL phantoms.

Discussion

PHNTMS replaces the obsolete subroutine PHANTS. PHANTS is described in
Appendix D.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

5-28 Second Edition

«
N

J

)

Conversion Routines and Other
Utilities

The first two sections of this chapter contain subroutines that convert data from
one form to another. The section Numeric Conversion Routines describes
routines that convert character strings into numbers. The section Date
Conversion Routines describes routines that convert date-time information from
one format to another.

The third section, Other Routines, describes routines that manipulate data in
ways not covered by other chapters of this volume. They perform a binary
search, encrypt a password, store and retrieve characters in arrays, parse a
character string into tokens, transfer output to a buffer, move a block of memory,
produce unique strings for identification purposes, or match a name against a
wildcard specification.

Second Edition 6-1

Subroutines Reference lll: Operating System

Numeric Conversion Routines

6-2

Second Edition

This section describes the following subroutines:

Routine

CHS$FX1
CHS$FX2
CH$HX2
CH$OC2

Function

Convert string (decimal) to 16-bit intcger.
Convert string (decimal) to 32-bit integer.
Convert string (hexadecimal) to 32-bit integer.
Convert string (octal) to 32-bit integer.

J

J

7 CH$FX1

)

CH$FX1

Conversion Routines and Other Utilities

CHS$FX1 converts a character string of any length into a FIXED BIN(15)
number. The string is interpreted as a decimal number.

Usage

DCL CHS$FX1 ENTRY (CHAR (*) VAR, FIXED BIN (15)
[, FIXED BIN (15)));

CALL CHS$FXI1 (string_to_convert, result [, nonstandard_code));

Parameters

string_to_convert
INPUT. CHARACTER (*) VARYING string that is to be converted. Leading
and trailing blanks are permitted. The minus sign (-) is permitted, but the
plus sign (+) is not. The string must represent an integer; the decimal point is
an invalid character. If the numeric value of the string is greater than 32767
or less than —32767, the result is undefined.

result

OUTPUT. FIXED BINARY (15) number produced by the conversion. Zero if
the string was null or illegal.

nonstandard code

OPTIONAL OUTPUT. Nonstandard error code. If this parameter is not
supplied and an error occurs, the CONVERSION condition is signalled. The
possible values of the code are

1 String contains embedded blanks
2 Overflow
3 Bad character in conversion
4 Illegal field
Discussion

CHS$FX1 is part of the PRIMOS binary conversion package. Other modules in
this package include

Second Edition 6-3

CHS$FX1

Subroutines Reference lll: Operating System

e CHS$FX2, like CH$FX1 except that it returns a FIXED BIN (31) value
o CHS$0C2, like CH$FX2 except that it treats the string as octal
e CH$HX2, like CHSFX2 except that it treats the string as hexadecimal

All have the same basic calling sequence.

These routines are useful if you have a file that contains numbers stored as
character strings and you wish to perform computations on the numbers. If you
use the error code argument, you have more control over input errors than you
do with the formatted I/O statements in most languages. And although PL/I
automatically performs a type conversion if you assign a character string to a
numeric variable, it also signals the CONVERSION condition for bad input
format. These subroutines, however, enable you to gain information about input
errors while you avoid incurring a runtime error.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.
R-mode: Not available.

64 Second Edition

~

7 CHs$Fx2

CH$FX2

Conversion Routines and Other Utilities

CHS$FX2 converts a character string of any length into a FIXED BIN (31)
number. The string is interpreted as a decimal number.

Usage

DCL CH$FX2 ENTRY (CHAR (*) VAR, FIXED BIN (31)
[, FIXED BIN (15)]);

CALL CH$FX2 (string_to_convert, result [, nonstandard_code]);

Parameters

string_to_convert

INPUT. CHARACTER (*) VARYING string that is to be converted. Leading
and trailing blanks are permitted. The minus sign (-) is permitted, but the
plus sign (+) is not. The string must represent an integer; the decimal point is
an invalid character. If the numeric value of the string is greater than
2147483647 or less than —2147483647, the result is undefined.

result

OUTPUT. FIXED BINARY (31) number produced by the conversion. Zero if
the string was null or illegal.

nonstandard_code

OPTIONAL OUTPUT. Nonstandard error code. If this parameter is not
supplied and an error occurs, the CONVERSION condition is signalled. The
possible values of the code are

1 String contains embedded blanks
2 Overflow
3 Bad character in conversion
4 Ilegal field
Discussion

CHS$FX2 is part of the PRIMOS binary conversion package. Other modules in
this package include CH$FX1, CH$HX2, and CH$OC2. See CH$FX1 fora
description of their functions.

Second Edition 6-5

CH$FX2
L L] L] L] » . L} L] » a

Subroutines Reference lll: Operating System

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

6-6 Second Edition

r

" CH$HX2

CH$HX2

Conversion Routines and Other Ultilities

CHS$HX2 converts a character string of any length into a FIXED BIN (31)
number. The string is interpreted as a hexadecimal number.

Usage

DCL CH$HX2 ENTRY (CHAR (*) VAR, FIXED BIN (31)
[, FIXED BIN (15)]);

CALL CHS$HX2 (string_to_convert, result [, nonstandard_code));

Parameters

string_to_convert
INPUT. CHARACTER (*) VARYING string that is to be converted. Leading
and trailing blanks are permitted. The minus sign (-) is permitted, but the
plus sign (+) is not. The string must represent an integer; the decimal point is
an invalid character. If the numeric value of the string is greater than
TFFFFFF or less than —7FFFFFF, the result is undefined.

result

OUTPUT. FIXED BINARY (31) number produced by the conversion. Zero if
the string was null or illegal.

nonstandard_code
OPTIONAL OUTPUT. Nonstandard error code. If this parameter is not
supplied and an error occurs, the CONVERSION condition is signalled. The
possible values of the code are

1 String contains embedded blanks
3 Bad character in conversion
Discussion

CHS$HX2 is part of the PRIMOS binary conversion package. Other modules in
this package include CH$FX1, CH$FX2, and CH$OC2. See CHS$FX1 for a
description of their functions.

CHS$HX2 interprets the input string as the representation of a hexadecimal
number. It converts the string to a FIXED BIN (31) number, which can then be
printed out as a decimal, octal, or hexadecimal number, depending on the output
procedure you use. The input string FFF would print in decimal form as 4095.

Second Edition 6-7

CH$HX2

Subroutines Reference Ili: Operating System

6-8

Second Edition

All ten digits, as well as the uppercase characters A through F, are valid.

Lowercase letters are illegal and receive error code 3.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.
R-mode: Not available.

J

CH$OC2

Conversion Routines and Other Ultilities

CH$OC2

CHS$OC?2 converts a character string of any length into a FIXED BIN (31)
number. The string is interpreted as an octal number.

Usage

DCL CH$OC2 ENTRY (CHAR (*) VAR, FIXED BIN (31)
[, FIXED BIN (15)]);

CALL CH$OC?2 (string_to_convert, result [, nonstandard_code));

Parameters

string_to_convert
INPUT. CHARACTER (*) VARYING string that is to be converted. Leading
and trailing blanks are permitted. The minus sign (-) is permitted, but the
plus sign (+) is not. The string must represent an integer; the decimal point is
an invalid character. If the numeric value of the string is greater than
r 17777777777 or less than —17777777777, the result is undefined.

result

OUTPUT. FIXED BINARY (31) number produced by the conversion. Zero if
the string was null or illegal.

nonstandard_code

OPTIONAL OUTPUT. Nonstandard crror code. If this parameter is not
ru supplied and an error occurs, the CONVERSION condition is signalled. The
possible values of the code are

1 String contains embedded blanks
3 Bad character in conversion
Discussion

CH$OC2 is part of the PRIMOS binary conversion package. Other modules in
this package include CH$FX1, CH$FX2, and CH$HX2. See CH$FX1 fora
description of their functions.

CHS$OC2 interprets the input string as the representation of an octal number. It
converts the string to a FIXED BIN (31) number, which can then be printed out
as a decimal, octal, or hexadecimal number, depending on the output procedure

~ Second Edition 6-9

CH$OC2

Subroutines Reference lil: Operating System

you use. The octal input string 777 would print in decimal form as 511. The
digits 8 and 9 are illegal and receive error code 3.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

6—-10 Second Edition

“N
‘

Conversion Routines and Other Utilities

-

Date Conversion Routines

This section describes the following subroutines:

Routine Function

CVs$DQS Convert binary date to quadseconds.
CVS$DTB Convert ASCII date to binary format.
CVSFDA Convert binary date to ISO format.
CVS$FDV Convert binary date to visual format.
CV$QSD Convert quadsecond date to binary format.

)

Second Edition 6-11

CVv$DQS

Subroutines Reference lil: Operating System

Cvs$DQS

6-12 Second Edition

CV$DQS converts a coded binary date string to quadseconds. One quadsecond
equals 4 seconds.

Usage

DCL CV$DQS ENTRY (FIXED BIN(31), FIXED BIN(31));

CALL CV$DQS (fs_date, quadseconds);

Parameters

Js_date

INPUT. The date to be converted, in file—system date format (FS—date). The
format of a 32-bit encoded FS-date is described in Appendix C. You obtain
this formatted date by calling the DATES$ system-information subroutine.

quadseconds
OUTPUT. Date as expressed in quadseconds since January 1, 1901 midnight.

Discussion

CVS$DQS is part of the PRIMOS standard date package. It takes a standard
bit-encoded FS—date and converts it to absolute quadseconds since January 1,
1901 midnight (01-01-01.00:00:00).

You can use CV$DQS to get dates into numeric form so that you can perform
computations on them. For simple comparisons of dates, you can use the
FS-date rcturncd by DATES.

Loading and Linking Information

V-modc and I-mode: No special action.
V-mode and I-mode with unshared librarics: Load NPFTNLB.
R-mode: Not available.

CV$DTB

CvsDTB

Conversion Routines and Other Utilities

CV$DTB converts an ASCII-format date to binary format.

Usage

DCL CV$DTB ENTRY (CHAR(128) VAR, FIXED BIN(31),
FIXED BIN);

CALL CVS$DTB (ascii_date, fs_date, code);

Parameters

ascii_date

INPUT. The ASCII-format date to be converted. Legal formats are described
below.

fs_date

OUTPUT. The bit-encoded file-system date format (FS-date) returned. The
format of a 32-bit encoded FS-date is described in Appendix C.

code

OUTPUT. Standard error code. (See Chapter 1 for information about the
standard error codes.) The possible values include

E$OK No error
E$BPAR The passed date string is illegal
Discussion

CVS$DTB is part of the PRIMOS standard date package. It converts an
ASCII-format date to FS-date (bit-encoded) format. Standard ASCII-format
dates can have any of the following three formats:

YY-MM-DD.HH:MM:SS{.DOW} (ISO format)
MM/DD/YY.HH:MM:SS{.DOW} (USA format)
DD MMM YY HH:MM:SS{Day-of-week} (Visual format)

Omitted date fields are replaced by today’s date information; omitted time fields
are replaced by zeros. If the string is null, zero is returned. The day-of-week
field is checked for consistency only.

Second Edition 6-13

Cvs$DTB

Subroutines Reference lll: Operating System

ﬂ

CVS$DTB is useful if you need to compare dates that may be stored in different
ASCII formats. Once you convert them to FS-date format, you can perform
comparisons on them.

If you need to obtain the current date and time in FS-date format, use the DATE$
system-information subroutine.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.
R-mode: Not available.

6-14 Second Edition “N

)

)

CV$FDA

Conversion Routines and Other Utilities

CVS$FDA

CVS$FDA converts a coded binary date string to ISO format.

Usage

DCL CV$FDA ENTRY (FIXED BIN(31), FIXED BIN, CHAR(21));

CALL CVS$FDA (fs_date, day_of week, formatted_date);

Parameters

fs_date

INPUT. The date to be converted, in file-system date format (FS-date). The
format of a 32-bit encoded FS-date is described in Appendix C. You obtain
this formatted date by calling the DATES$ system-information subroutine.

day_of _week

OUTPUT. A number corresponding to the day of the week. Sunday is O,
Monday is 1, and so on.

Sormatted_date
OUTPUT. ASCII-format date in ISO format, as described below.

Discussion

CVS$FDA is part of the PRIMOS standard date package. It converts an FS-date
string to ISO format.

ISO format dates are designed primarily for machine readability. Dates that are
to be read primarily by people should be converted with CV$FDV.

The date retuned is in the format YY-MM-DD.HH:MM: SS .DOW. An example
is

86-04-15.17:05:36.Tue

If the passed date is illegal, formatted_date is setto ** invalid date *x*,
and day_of week is setto 1.

Second Edition 6-15

CVS$FDA

Subroutines Reference lil: Operating System

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

6—-16 Second Edition

J

)

CVS$FDV

Conversion Routines and Other Utilities

CV$FDV

CVS$FDV converts a coded binary date string to visual format.

Usage

DCL CVS$FDYV ENTRY (FIXED BIN(31), FIXED BIN, CHAR(28) VAR);

CALL CVSFDY (fs_date, day_of week, formatted_date);

Parameters

f5s_date

INPUT. The date to be converted, in file-system date format (FS-date). The
format of a 32-bit encoded FS-date is described in Appendix C. You obtain
this formatted date by calling the DATE$ system-information subroutine.

day_of week
OUTPUT. A number corresponding to the day of the week. Sunday is 0,
Monday is 1, and so on.

Jormatted_date
OUTPUT. ASCII-format date in visual format, as described below.

Discussion
CVS$FEDV is part of the PRIMOS standard date package. It converts an FS-date
string to visual format.

Visual format dates are designed primarily to be read by users. Because they
contain blanks and are not ordered in a strictly decreasing way, they are not
particularly suited for machine readability. Dates that must be machine-readable
should be converted with CVSFDA.

The date retuned is in the format DD MMM YY HH:MM:SS day of week.
An example is

15 Apr 86 17:05:36 Tuesday

If the passed date is illegal, formatted date issetto ** invalid date **,
and day_of weekis setto-1.

Second Edition 6-17

CVS$FDV

Subroutines Reference liI: Operating System

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

6-18 Second Edition

J

Ccvs$QsD

r e = = ® 8 8 ® =2 ® »

Conversion Routines and Other Utilities

-
cvs$QsD

CV3$QSD converts a date and time in quadsecond form into file-system date
format. One quadsecond equals 4 seconds. CV$QSD is the reverse of
CV$DQS.

Usage

DCL CV$QSD ENTRY (FIXED BIN(31), FIXED BIN(31));

CALL CVS$QSD (quadseconds, fs_date);

Parametlers

quadseconds

INPUT. The date to be converted, expressed in quadseconds since January 1,
1901 midnight. You usually obtain this value by calling the DATE$ function
and then converting its output to quadseconds with CV$DQS.

”~ fs_date
OUTPUT. The date in file-system date format (FS-date). The format of a
32-bit encoded FS-date is described in Appendix C.

Discussion

CV$QSD is part of the PRIMOS standard date package. It takes a date in
absolute quadseconds since January 1, 1901 midnight (01-01-01.00:00:00) and
’ converts it to standard bit-encoded FS-date format.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.
R-mode: Not available.

”~ Second Edition 6-19

Subroutines Reference ill: Operating System

Other Routines

This section describes the following subroutines:

Routine Function

BINS$SR Perform binary search in ordered table.
ENCRYPT$ Encrypt login validation passwords.
GCHAR Get a character from an array.
GTS$PAR Parse character string into tokens.
IOASRS Provide free-format output to a buffer.
MOVEW$ Move 2 block of memory.

NAMEQS$ Compare two character strings.
SCHAR Store a character into an array location.
UID$BT Return unique bit string.

UID$CH Convert UID$BT output into character string.

6-20 Second Edition

BINSSR

BINSSR

Conversion Routines and Other Utilities

BINS$SR performs a binary search in an ordered table kept in part of a segment.
The table consists of fixed-size entries indexed by a varying character string. If
the routine finds the entry searched for, it returns a pointer to the entry. Ifit
does not find it, it indicates where the missing entry should be inserted into the
table. There are three restrictions:

® The table must fit in a 64K halfword (128K byte) segment.

e All entries must be the same size.

o All offsets in the segment must be zero modulo the entry size in halfwords.

Usage

DCL BIN$SR ENTRY (CHAR(*) VAR, FIXED BIN, PTR, PTR, PTR,
FIXED BIN);

CALL BINSSR (entry, entry_size, start_ptr, end_ptr, spot_ptr, code);

Parameters

entry
INPUT. A varying character string that contains the index name of the entry
to be searched for.

entry_size
INPUT. The size of each entry in halfwords, including the space for the index
name.

start_ptr
INPUT. A pointer to the first entry in the table.

end_ptr
INPUT. A pointer to the last entry in the table.

spot_ptr
OUTPUT. A pointer either to the entry or to the place to insert the entry.

Second Edition 6-21

BIN$SR

Subroutines Reference lli: Operating System

6-22 Second Edition

code
OUTPUT. A nonstandard error code with the following values:

0 The entry was found, and spot_ptr points to it.

1 The entry was not found, and spot_ptr points to where it
should be inserted.

2 The arguments to the call were bad; either start_ptr and

end_ptr did not point to the same segment, or the halfword
offset of either pointer was not zero modulo entry size.

3 The entry was not found, and the place to insert it, pointed
to by spot_ptr, is not in the current segment. This means
that the segment is full.

Discussion

This routine can also be used to handle a table in which the indices are integers
rather than varying character strings. The following data structure should be
used:

DCL 1 entry,
2 lenc FIXED BIN,
2 name FIXED BIN,
2 info FIXED BIN;

In this structure, entry.lenc is the length of the index in bytes. entry.name is the
index; it can be either FIXED BIN(15) or FIXED BIN(31). Ifitis FIXED
BIN(15), then entry.lenc is 2; if it is FIXED BIN(31), then entry.lenc is 4.
entry.info is arbitrary; it can be any type or size, not just FIXED BIN. The entry
length for this structure is (1 + size(name) + size(info)), but only the name field
is used in locating the entry.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

J

J

ENCRYPT$

ENCRYPT$

Conversion Routines and Other Ultilities

ENCRYPT$ encrypts login validation passwords for use by the User
Registration feature of PRIMOS. Users who need a one-way password
encryption algorithm may find it useful.

Usage

DCL ENCRYPT$ ENTRY (CHAR(16), CHAR(16) VAR);

CALL ENCRYPTS (encrypted_password, unencrypted_password);

Parameters

encrypted_password
OUTPUT. The encrypted value of the unencrypted password.

unencrypted_password
INPUT. An ASCII login validation password up to 16 characters long.

Discussion

Login validation passwords may contain any characters other than PRIMOS
reserved characters. (See the PRIMOS User’s Guide for a list of these
characters.) Lowercase alphabetic characters are mapped to uppercase.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared librarics: Load NPFTNLB.
R-mode: Not available.

Second Edition 6-23

GCHAR

Subroutines Reference Ill: Operating System

GCHAR

6-24 Second Edition

GCHAR gets a character from an array. Its counterpart is SCHAR, which stores
a character in an array. SCHAR is described later in this section.

Since GCHAR is stricily a FORTRAN tool, its Usage information is given in
FORTRAN format.

Usage

INTEGER*2 char, array(1), index

char = GCHAR(LOC(array), index)

Parameters

LOC(array)

INPUT. A pointer to the array of characters from which the character is to be
retrieved.

index

INPUT/OUTPUT. Index of the location of char in the array. Incremented by 1
after each call to GCHAR.

char

RETURNED VALUE. The character returned, in the right-hand byte of a
16-bit integer.

Discussion

GCHAR s helpful in retrieving character information for a FORTRAN program.

You must load the pointer index with position (X — 1) in order to get the
character from position X in the array. For example, if the character is in
position 1, then you must initialize index to 0. After the operation, index is
incremented by 1.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

J

GT$PAR

r " & &« ®m ®w & B 2 ® &8

Conversion Routines and Other Utilities

GTS$PAR

The subroutine GT$PAR is used to parse a character string into tokens separated
by three types of characters. The three types are white spaces, quote characters,
and break characters. A single token is returned by each call to GT$PAR.

Usage

DCL GT$PAR ENTRY (BIT(16) ALIGNED, CHAR(*) VAR,
CHAR(*) VAR, CHAR(*) VAR,
CHAR(*) VAR, CHAR(*) VAR, FIXED BIN,
1,
7 2,

3 BIT(11),

3 BIT(1),

3 BIT(1),

3 BIT(1),

3 BIT(1),

3 BIT(1),

2 CHAR(1) ALIGNED,
~ FIXED BIN);

CALL GTS$PAR (key, white, quote, break, source_str, token_str,
token_str_size, info, next_char);

Parameters

key
' INPUT. A bit string of length 16. Overlaying it is the following structure:

1 key,

2 mbz BIT(1l1l),
leave_trailing white space BIT(1),
no_comment BIT(1l),
quote cont BIT(1l),
keep_quotes BIT(1),
no_shift BIT (1)

NN

key.mbz
Reserved for future expansion.

I = Second Edition 6-25

GT$PAR

Subroutines Reference lil: Operating System

6-26 Second Edition

key.leave_trailing_white_space

"1’B tells GT$PAR not to skip white space at the end of the token. This will
cause the value returned in info.delimiter (see below) to be a white space
character, even if there is a break character after the white space character(s).
Next _char will point to the character after the first white space character
found.

key.no_comment

"0’B tells GT$PAR that the character sequence /* is to signal the end of the
line and the start of a comment. *1’'B means that no comment delimiter
checking is done.

key.quote_cont

"1’B tells GT$PAR to assume that the source character string has an
info.delimiter before the first character. This is useful in handling a quoted
token that spans multiple strings.

key.keep_quotes

"1’B tells GT$PAR not to remove one level of quote characters after
processing them. This means that a quoted token can be correctly reprocessed
by another parser as a single literal token.

key.no_shift

'1’B tells GT$PAR not to convert nonquoted lowercase characters to
uppercase. '0’B tells it to convert nonquoted lowercase characters to
uppercase.

white

INPUT. A varying character string containing all the characters that are to be
considered as a white space character. There can be any number and mixture
of white space characters between tokens. Any leading and/or trailing white
space character(s) are removed from a token.

quote

INPUT. A varying character string containing all the characters that are to be
considered as quote characters. All characters between a matched pair of
quote characters (including different quote characters) are treated literally. If
there are two of the current quote characters in a row, then a single quote
character will be placed in the token and will not be considered the end of the
quoted string. (If the key.keep _quotes bit is a *1’B, then all quotes will be
kept).

J

http://key.no

N

GT$PAR

Conversion Routines and Other Utilities

For example, if the quote characters were * and , then each of the following
strings would be considered a single token:

String Token

’foo bars” inc.’ foo bars’ inc.

foo’ bars” ’inc. foo bars” inc.

“It was John’s ball ...” It was John’s ball ...

993333

”a ’mix’” of ””quotes a “mix”’ of "quotes”

break

INPUT. A varying character string containing all the characters that are to be
considered as a break character. There is at most one break character between
each token. Since a single break character always separates tokens, two break
characters in a row have a null token between them. Since leading white space
characters are ignored (see above), there can be any number of white space
characters between two break characters and that token will still be null.

source_str
INPUT. A varying character string containing the text to be parsed.

token_str

OUTPUT. A varying character string into which GT$PAR will place the
token.

token_str size

INPUT. The maximum length of token_str in characters. If the token is longer
than this, it will be truncated, and info.flags.truncated (see below) will be set
to 'I'B.

info

INPUT/OUTPUT. The following structure, into which GT$PAR will place
information about the token returned in token_str:

1l info,
2 flags,
3 mbz BIT(11),
3 partial BIT(1l),
3 has_qguotes BIT (1),
3 truncated BIT(1),
3 delimiter eol BIT(1),

3 eol BIT(1),
2 delimiter CHAR(1l) ALIGNED;

Second Edition 6-27

GT$PAR

6-28 Second Edition

Subroutines Reference llI: Operating System

info flags.mbz
Reserved for future expansion.

info.flags.partial
’1’B if there was no closing quote for the current token. The quote character is
placed in info.delimiter.

info.flags.has_quotes
’1’B if the token is a quoted string.

info.flags.truncated
"1’B if and only if the token was too long to fit into token_str.

info.flags.delimiter_eol
’1’B if this token was delimited by the end of the string.

info.flags.eol
"1’B if there is no token available because the end of source_str has been
reached.

info.delimiter

If info flags.partial is *1’B, then info.delimiter is the quote character. If

info flags.delimiter eol is *1°B, then info.delimiter is undefined. Otherwise,
info.delimiter is the character that delimited the end of the token.

Only if key.quote_cont is *1’B is info.delimiter valid as input to GT$PAR;

info flags is never used for input. If key.quote cont is *1’B, then info.delimiter
contains the current quote character for a quoted token that spans multiple
strings.

next_char

INPUT/OUTPUT. The index of the next character to be examined in the
source string (character 1 is the first character in the string). If you wish to
start parsing at the start of the string, next_char should be set to 1 before the
call to GT$PAR. After GT$PAR retumns, next _char will point to the character
after the delimiting character. This means that the current place in the string
can be saved and a particular token can be reparsed if so desired.

Discussion

Any of the white, quote, or break arguments can be the null string. The null
string means that there are none of that type of delimiter.

2)

http://info.flags.mbz

)

N

GT$PAR

Conversion Routines and Other Utilities

Example

DCL TOKEN CHAR(40) VAR;

DCL NEXT FIXED BIN;

NEXT = 1;

CALL GTSPAR(’0’B, 7 *, ’”f, *.7, ' A line.’, TOKEN, 40,
INFO, NEXT) ;

The first time the CALL statement is executed, it retumns NEXT = 4, all
info flags = *0’B, info.delimiter =’ ’, and TOKEN ="A’,

If the CALL statement is executed again, it returns NEXT =9, all info flags =
"0’B, info.delimiter =’.’, and TOKEN = 'LINE’.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.
R-mode: Not available.

Second Edition 6-29

I0ASRS

Subroutines Reference Ill: Operating System

IOASRS

IOASRS provides free-format output to a buffer. It is similar to IOA$, which
provides free-format output to the terminal. IOAS$ is described in Chapter 3 of
this volume.

Usage

DCL IOAS$RS ENTRY (CHAR(*), FIXED BIN, FIXED BIN, CHAR(*),
FIXED BIN [, any type, ... any type));

CALL IOAS$RS (buffer, bufsize, buflen, control, conlen [, argl, ... argn));

Parameters

buffer
OUTPUT. The character string into which IOA$RS writes the formatted text.

bufsize

INPUT. The capacity of buffer, in characters: that is, buffer must be able to
hold a maximum of bufsize characters. buffer is padded with blanks to this
stated capacity if the length of the generated text is less than bufsize.

buflen

OUTPUT. The number of characters of text gencrated by the formatting and
conversion operations.

control

INPUT. A character string that specifies both the literal text to be output and
the conversion operations to be performed on the arguments. For information
on the format of this string, see the discussion of IOAS.

conlen

INPUT. The length of control, in number of characters. For more inform-
ation, see the discussion of IOA$ in Chapter 3.

argl, ... argn

OPTIONAL INPUT. Optional arguments, which can be of any data type. For
more information, see the discussion of IOA$ in Chapter 3.

6-30 Second Edition

J

)

IOAS$RS
[] L] - - L a a a a L]

Conversion Routines and Other Utilities

Discussion

IOASRS is identical to IOAS$ except that it puts the formatted text into a
character buffer variable, rather than writing it directly to the terminal. In
addition, the length of the buffer is specified by the calling program, whereas
I0AS imposes a 400-character limit on output volume.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

Second Edition 6-31

MOVEWS
[] - L L] s - - L] [] -

Subroutines Reference Ill: Operating System

MOVEWS$

MOVEWS$ moves a block of memory efficiently from one place to another.

Usage

DCL MOVEWS ENTRY (POINTER, POINTER, FIXED BIN);

CALL MOVEWS (from_ptr, to_ptr, num_halfwords);

Parameters
from_ptr
INPUT. Pointer to place to move from.

to_ptr
INPUT. Pointer to place to move to.

num_halfwords
INPUT. Number of halfwords to move. A halfword is 16 bits.

Discussion

Make sure that the two areas of memory you are using do not overlap.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.
R-mode: Not available.

6-32 Second Edition

J

)

NAMEQ$

NAMEQS$

Conversion Routines and Other Utilities

NAMEQS is a logical function that compares two character strings for
equivalence.

Usage

DCL NAMEQ$ ENTRY (CHAR(*), FIXED BIN, CHAR(*),
FIXED BIN) RETURNS(FIXED BIN);

eqnam = NAMEQS (stringl, lenl, string2, len2);

Parameters

stringl
INPUT. The first string for comparison.

lenl
INPUT. The length in characters of stringl.

string2
INPUT. The second string for comparison.

len2
INPUT. The length in characters of string2.

egnam
RETURNED VALUE. 1 if the strings are the same, 0 if they are not.

Discussion

NAMEQS$ performs a character-by-character comparison of stringl and string2
for length lenl or len2, whichever is shorter. Then, if the two strings are
identical so far and the next character in the longer string is a blank, NAMEQ$
returns 1; if not, it returns 0. For instance, a comparison of HOW and HOW'Y
returns the value 1 (TRUE), while a comparison of HOW and HOWDY returns 0
(FALSE).

You are likely to need this subroutine only if you are using FORTRAN. Other
high-level languages have their own facilities for string comparison.

Second Edition 6-33

NAMEQS$

Subroutines Reference Ill: Operating System

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

6-34 Second Edition

p

SCHAR

SCHAR

Conversion Routines and Other Utilities

SCHAR stores a character into an array location. Its counterpart is GCHAR,
which retrieves a character from an array. GCHAR is described earlier in this
section.

Since SCHAR is strictly a FORTRAN tool, its Usage description is given in
FORTRAN format.

Usage

INTEGER*2 array(1), index, char

CALL SCHAR (LOC(array), index, char)

Parameters

LOC(array)

INPUT — OUTPUT. Pointer to the array of characters in which the character
is to be stored.

index

INPUT/OUTPUT. Index of the location of char in the array. Incremented by
1 after each call to SCHAR.

char

INPUT. Character to be stored. It must be in the right-hand byte of a 16-bit
integer.

Discussion

SCHAR is helpful for storing character data from a FORTRAN program.

If you are storing characters starting with the beginning of an array, the pointer
index, index, must be initialized to 0. It is incremented by 1 after each call to
SCHAR. If you are not storing the character in the first position in the array,
then you must load index with position (X — 1) in order to store the character at
position X.

The right side of char holds the character for storage. For example, to store the
single character A you load char with A — A in the right side of the halfword
and the blank character (or any other character) in the left side of the halfword.

Second Edition 6-35

SCHAR

J

Subroutines Reference Ili: Operating System

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

Note Make sure that FORTRAN_IO_LIBRARY.RUN is specified in your search rules.

6-36 Second Edition

UID$BT

UID$BT

Conversion Routines and Other Utilities

UIDS$BT returns a unique bit string for identification purposes.

Usage

DCL UID$BT ENTRY (BIT (48) ALIGNED);

CALL UIDS$BT (unigue_bit_string);

Parameters

unique_bit_string
OUTPUT. Unique bit string returned.

Discussion

The string is guaranteed to be unique. This bit string is not random; it is formed
by concatenating a recent date and time, in file-system date format (FS-date),
with a 16-bit counter. (The format of a 32-bit encoded FS-date is described in
Appendix C.) Note that the date and time string is used for uniqueness; it may
not necessarily be the correct date and time. If a random number is required
rather than a unique identifier, the applications library routine RANDSA should
be used.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

Second Edition 6-37

UID$CH

Subroutines Reference IlI: Operating System

UID$CH

6-38 Second Edition

Given a unique bit string, UID$CH returns a unique character string based on the
bit string. This string can be used as a filename.

Usage

DCL UID$CH ENTRY (BIT (48) ALIGNED, CHAR (13));

CALL UIDS$CH (unique_bit_string, character_string);

Parameters

unique_bit_string

INPUT. Unique bit string, preferably generated by UID$BT (see UID$BT
above).

character_string

OUTPUT. The resulting character string. The string is formed by converting
each 4-bit chunk of the bit string into one of 16 consonants and prefixing the
result with a §.

Discussion

UID$CH is designed to be used with bit strings generated by UID$BT. See
UIDS$BT for details.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

J

J

)

Y

Condition Mechanism

This chapter describes subroutines used in the implementation of the condition
mechanism. The first part of this chapter describes subroutines used to signal
and catch conditions. The second part describes three subroutines used to
control automatic signalling of the EXIT$ condition. The third part describes the
data structure formats associated with the condition mechanism. Most programs
do not use these data structures.

A condition is an unscheduled software procedure call (or block activation)
resulting from an unusual event. Such an unusual event might be a
hardware-defined fault, an error situation that cannot be adequately handled in
the current subroutine, or an external event such as a QUIT from the user
terminal. The condition mechanism

e Provides a consistent and useful means for system software to handle error
conditions.

¢ Enables programs to handle error conditions without forcing a retum to
command level.

¢ Provides support for the condition mechanism of ANSI PL/L

When such an event happens, PRIMOS is asked to find a condition handler,
known as an on-unit. PRIMOS finds the on-unit by searching the process’s
stack for frames that have predefined on-units that can handle that named
condition. If PRIMOS finds an on-unit, the on-unit is invoked.

The subroutines described in this chapter enable the programmer to create and
use on-units. These features are available to programmers using all languages
supplied by Prime. The descriptions below use mostly PL/I terminology, with
special advice for FORTRAN users.

Within any procedure, users can create on-units for as many conditions as
circumstances require. These conditions can be standard PRIMOS conditions or
nonstandard conditions signalled by subroutines described in this chapter.

Appendix A contains a list of system-defined conditions. Because PRIMOS error
handling uses conditions, the list of condition names is helpful in interpreting
error messages printed by PRIMOS.

Second Edition 7-1

Subroutines Reference lll: Operating System

On-unit Actions

An on-unit can take a variety of actions, including the following:

¢ Terminate the program by means of a nonlocal GOTO, passing control
back to the main program, so that it can call EXIT and return to PRIMOS
level.

¢ Run diagnostic routines and then terminate the program (as above).

e Repair the problem that caused the error condition and have the program
resume execution from the point of interruption.

e Ignore the error condition and resume running the program.

¢ Transfer control to some predetermined spot in the program, possibly in a
procedure different from the one that raised the error condition.

e Pass control back to the condition mechanism and tell it to hunt for another
on-unit.

e Print messages and then do any of the above.

¢ Print messages and/or run diagnostic routines and then transfer control
back to the user at the terminal (as the system default on-unit does).

Creating and Using On-units

-2

Second Edition

On-units can be procedures or PL/I begin blocks. A begin block results from a
PL/I ON statement. Procedures are created by the following subroutines:
MKONUS$, MKONS$F, and MKONS$P.

The use of these subroutines is the only way to create an on-unit in a non-PL/I
environment.

An on-unit can be invalidated by the PL/I REVERT statement or by using the
following subroutines:

RVONU$
RVONSF

The condition mechanism is activated whenever a condition is raised. A
condition is raised implicitly by some exception being detected during regular
program execution. A condition may be raised explicilly by the PL/I SIGNAL
statement or by a call to the following subroutines:

SIGNL$
SGNLS$F

J

N\

y)

Condition Mechanism

The system finds the correct on-unit by searching backwards through the call
stack until it encounters an appropriate procedure activation. An appropriate
procedure activation is one that has previously created an on-unit for the
condition. If an appropriate procedure activation is not found, but if an on-unit
for the special condition ANYS$ exists, the ANY$ on-unit is selected as the

default on-unit.

All users are automatically protected by PRIMOS, which catches all conditions

as a last resort and takes appropriate default action.

Table 7-1 lists the condition mechanism subroutines and summarizes their

functions.

Table 7-1. Condition Mechanism Subroutines

Action Programming Language (1)
F117,C,

FIN Pascal PL/ PMA
Create an on-unit MKONSF MKONSP @ MKONUS$(2)
Signal a condition SGNLSF SGNLS$F SIGNLS$ SIGNL$
Cancel (revert) an RVONSF RVONSF RVONUS$(3) RVONUS$
on-unit
Nonlocal GOTO PL1$NL PL1SNL(6) @ PL1SNL
Make PL/I- MKLBS$F MKLBSF(5) (6) “@ MKILBS$F
compatible label

Notes to Table 7-1

1. The CPL language, not shown in this table, also supports the condition
mechanism, but without the use of these subroutine calls. See the Examples
of Programs section later in this chapter.

2. You must provide an extended stack area, and, while the condition handler
is active, you must not modify the character-varying variable that holds the

condition name.

3. Use the language-supplied REVERT statement for PL/I predefined

conditions.

4. Supported directly by the programming language.

S. Not supported with Pascal.

Second Edition 7-3

Subroutines Reference lll: Operating System

7—4

Second Edition

6. Use the C language library subroutines SETIMP() to establish a label and
LONGIMP() to perform the nonlocal GOTO back to that label. For more
information, see the C User’s Guide.

When you create on-units, remember that

¢ On-units can pass control in one of three ways: by calling another
procedure, by using a local or nonlocal GOTO, or by returning to the
calling procedure. They may not call EXIT, though they may GOTO a
point in the main program which does so.

¢ On-units may set error codes as return parameters, print eIror messages, or
signal other error conditions. They may not call ERRRTN or use
ERS$SPRINT with any key other than the immediate-return key (K$IRTN).

® Programs containing on-units must be compiled in either V mode or I
mode.

® Procedures that are on-units must take at least one argument,

Every on-unit has the name of the condition it is handling. A condition name is
a character string (up to 32 characters) and may represent a system-defined
condition if the name is one reserved for system use. If the name is not one
reserved for system use, the on-unit represents a user-defined condition.
Appendix A describes the system-defined conditions.

Scope of On-units

On-units are usually defined at the beginning of a program or subroutine, but
they can be defined at any point within the program. When the program reaches
the point at which the on-unit is defined (that is, a call to MKONU$, MKONSP,
or MKONSF), the on-unit is said to be set. However, the on-unit does not
execute unless the condition to which it responds is raised. An on-unit remains
set until one of three things happens:

e The procedure within which the on-unit was defined retumns (ends).
¢ A new on-unit for the condition is defined.

e The on-unit is reverted (disabled) by a call to RVONU$ or RVONSE

Thus, if an on-unit for the condition ARITHS$ is defined at the beginning of a
program, it remains in effect throughout the program, unless it is reverted or
some other on-unit for ARITHS$ is defined later in the program. If a subroutine
within that program defines its own on-unit for ARITHS, then that on-unit takes
precedence (but only while the subroutine is executing). Each call to the
subroutine reestablishes its on-unit; each return from the subroutine reverts the
new on-unit and reestablishes the on-unit defined in the main program. (If no

J)

b

)

Condition Mechanism

on-unit is defined within the main program, then PRIMOS on-units are in effect
when the main program is running.)

FORTRAN Considerations

The use of on-units and of nonlocal GOTOs is somewhat restricted in
FORTRAN, because there are no internal procedures or blocks. Therefore,

e FORTRAN on-units must be subroutines that, by definition, are not
internal to the subroutine or main program creating the on-unit.

* Nonlocal GOTOs work only to a previous stack level because the target
statement label belongs to the caller of the subroutine performing the
nonlocal GOTO.

A full-function nonlocal GOTO requires that the target label identify both a
statement and a stack frame of the program that contains the statement. The
subroutine MKLBSF creates a PL/I-compatible 1abel and the subroutine PL1$NL
performs a nonlocal GOTO to a specified target label. Labels produced by
MKLBSF are acceptable to PL1SNL.

This chapter documents subroutines in PL/I notation. FORTRAN users can
convert between PL/I and FORTRAN data types by using Table 7-2.

Second Edition 75

Subroutines Reference Ill: Operating System

7-6

Second Edition

Table 7-2. Conversion of PL/I to FORTRAN Data Types

PLII FORTRAN

CHAR(n) INTEGER((n+1)/2)
CHAR(n) VAR INTEGER(((n+1)/2)+1)
FIXED BIN(15) INTEGER*2

FIXED BIN(31) INTEGER*4

LABEL REAL*S

ENTRY VARIABLE REAL*8

PTR OPTIONS (SHORT) INTEGER*4
BIT(n) INTEGER*2 (1<=n<=16)

The PL/I interfaces use the PL/I data type CHARACTER(*) VARYING, which
is not available in FTN. However, 1977 ANSI FORTRAN (F77) includes the
data type CHARACTER*N, which is the equivalent of PL/I CHARACTER(N),
NONVARYING. Interfaces are provided that use the nonvarying character
strings. It is possible to simulate varying character strings in FORTRAN with an
INTEGER*2 array in which the first element contains the character count and
the remaining elements contain the characters in packed format. For example:

PL/
DCL NAME CHAR(S) VARYING STATIC INITIAL (’/QUITS$’):;

FORTRAN
INTEGER*2 NAME (4)
DATA NAME/5, ‘QUITS’/

For information on mapping PL/I data types to other languages, such as Pascal,
COBOL, and C, see Subroutines Reference I: Using Subroutines.

On-units must be carefully designed not to require reentrancy which is not
supported by FORTRAN. See how I/O must be handled in Examples of
Programs, below.

Default On-unit

The default on-unit, ANY$, can be created to intercept any condition that might
be activated during a procedure. (The ANY$ on-unit is created by a call to
MKONUS$ or MKONSE)

J

J

J

)

Note

Condition Mechanism

When a condition is raised, the condition mechanism first searches for an on-unit
for the specific condition. If a specific on-unit exists, it is selected. Otherwise, if
an ANY$ on-unit exists, the ANY$ on-unit is selected.

Your programs should avoid the use of the ANY$ on-unit. Your ANY$ on-unit
should not attempt to handle most system-defined conditions, but should pass
them on to the next on-unit by simply returning. Whenever an ANY$ on-unit is
invoked, the continue switch is set and your ANY$ on-unit must return with the
continue switch still set. Failure to do so can cause problems with PRIMOS.

The continue switch indicates to the condition mechanism whether the on-unit
that was just invoked (or any of its dynamic descendants) wishes the backward
scan of the stack for on-units for this condition to continue upon the on-unit’s
return. The subroutine CNSIGS$ is used to request that the switch be turmed on.
This switch is cleared before each on-unit (except ANY$) is invoked. See the
discussion of the continue switch at ¢flags.continue_sw in the Data Structure
Formats section later in this chapter.

The Prime Symbolic Debugger (DBG) uses the standard condition ILLEGAL_INSTS
internally. If you create an on-unit for ILLEGAL_INSTS, or if an on-unit for ANY$
handles the ILLEGAL_INSTS$ condition, such an on-unit must continue the signal if the
program is to be successfully debugged using DBG.

Examples of Programs

Note

Below are sample programs in FORTRAN 66 (FTN), FORTRAN 77 (F77), PL/1
(PL1), and CPL that use an on-unit to trap the QUITS$ condition. The programs
are similar, but not identical, in operation.

In both FORTRAN examples (FTN and F77), the on-unit must avoid using standard
FORTRAN J/O, and instead uses TNOU. The condition has arisen in the middle of
FORTRAN input, and since FORTRAN I/O is not reentrant, use of FORTRAN I/O by the
on-unit would destroy the environment to which it cventually returns. PL/I supports
reentrancy and does not require this precaution.

FORTRAN Example

C Program to demonstrate on-unit in FTN
C
EXTERNAL CATCH
INTEGER*2 BREAK(3), BREAKL, I
DATA BREAK/‘QUITS'/
BREAKL = 5

Second Edition 7-7

Subroutines Reference lll: Operating System

7-8

Second Edition

300
100

200

330

400

CALL MKONSF (BREAK, BREAKL, CATCH)

WRITE (1, 300)

FORMAT (' Please enter an integer, then RETURN.’)
CONTINUE

READ (1,200) I

FORMAT (I8)

IF (I .EQ. 0) GOTO 400

WRITE (1,330)

FORMAT (' Again, 0 to exit, BREAK to test on-unit.’)
GOTO 100

STOP

END

SUBROUTINE CATCH (PNTR)

INTEGER*4 PNTR

CALL TNOU('We caught a quit!’,17)

PAUSE 1

CALL TNOU(’You’’re back into the input loop
again.’, 38)

RETURN

END

FORTRAN 77 Example

C Program to demonstrate on-unit in F77

C

100

200

external catchit

integer*2 break length

character*5 break/’QUITS’ /

break_length = 5

call mkonS$p (break,break length,catchit)

print*, ’‘Please enter an integer, then RETURN.’

continue

read(1l,*) 1

if (i.eq.0) goto 200

print*, ’'Again, 0 to exit, BREAK to test on-unit.’

goto 100

end

subroutine catchit (pntr)

integer*4 pntr

call tnou(’We caught a quit!’,ints(17))

pause 1

call tnou(’You’’re back into the input loop
again.’,ints (38))

return

end

J

"l " = 8 ® = & = ® u &»

Condition Mechanism

PL/I Examples

/* Program to demonstrate on-unit in PL/I */

ex pll: procedure options (main):
dcl mkon$p entry(char(*), fixed bin, entry):
dcl (break length, i) fixed bin(15):
dcl (break) character(5) static initial(’'QUITS’):
break_length = 5;
call mkon$p (break, break length, catchit):
put skip list (’'Please enter an integer,

then RETURN.'):;
get list (i);
do while (i 7= 0);
r put skip list ('Again, 0 to exit, BREAK to test
on-unit.’);
get list (i):

end;
stop;

catchit: proc (pntr):;
dcl pntr pointer;
put skip list (’We caught a quit!’);
put skip list (’You'’’re back into the input loop

r again.’);

return;

end;

end;

/* Modified program to demonstrate on-unit in PL/I */
/* Shows use of MKONUS (instead of MKONSP) */

ex_pll: procedure options (main):
r declare mkonu$ entry (character(32) varying, entry)
' options (shortcall (20)):;
declare (break) character(32) static initial ('QUITS’)
varying;
declare i fixed binary(1l5);
call mkonu$ (break, catchit):
put skip list (’Please enter an integer,
then RETURN.');
get list (i):;
do while (i ~= 0):
put skip list (’Again, 0 to exit, BREAK to test
on-unit.’);
get list (i):
end;
stop;

r catchit: procedure (pntr):

f‘ Second Edition 7-9

Subroutines Reference lll: Operating System

declare pntr pointer;
put skip list (’We caught a quit!’);
put skip list (’You’’re back into the input loop
again.’);
return;
end;
end;

CPL Example

/* Program to demonstrate on-unit in CPL.
/* Note that CPL cannot call a make-on-unit
/* subroutine. Instead, we show the use of
/* the ON statement provided by CPL.

&on QUITS &routine catchit

type ’‘Please enter an integer, then RETURN.’

&set_var i := (response ’']

&do &while %i% "= 0
type ‘Again, 0 to exit, BREAK to test on-unit.’
&set var i := [response '']

&end

&stop

&routine catchit

type ‘We caught a quit!’

type ’‘You’’re back into the input loop again.’
&return

Additional Program Examples

7-10 Second Edition

The programs presented below show strategies for using the condition
mechanism. The examples include

e CPL programs that handle on—units for a program that does not itself use

on—units,

¢ A FORTRAN 77 (F77) program that shows reentering a program with the
PRIMOS REN command. The program also shows the use of the nonlocal
GOTO.

e A FORTRAN 66 (FTN) program that handles QUIT$ and shows the
nonlocal GOTO.

e A PL/I(PL1) program that handles end of file.

¢ A FORTRAN 66 program that demonstrates the CLEANUPS$ condition,
which is raised while processing a nonlocal GOTO.

J)

N

-~

D

Condition Mechanism

Two Protecting Programs in CPL

Below are two programs, each of which protects a FORTRAN program called
SQRT against being interrupted by the BREAK (or CONTROL-P) key. They
demonstrate both a simple and a more sophisticated means by which programs
can avoid having to use the condition mechanism subroutines. When the
language in which a program is written does not support on—units, or when
condition handling is added as an afterthought, CPL can sometimes be used to
handle conditions.

/* PROTECT.CPL
/* Trap the BREAK key with an on-unit in CPL.
/*
&ON QUITS &ROUTINE BREAK HANDLER
&DATA SEG SQRT
&TTY
&END
&RETURN

&ROUTINE BREAK HANDLER

TYPE

TYPE

TYPE You have typed the break key.
&SET VAR EXIT FLAG := ~

[QUERY 'Do you wish to exit from the program’]
&IF ~ %EXIT FLAGS ~
&THEN ~
TYPE Continuing programn.
&ELSE ~
&DO
TYPE Exiting program.
&STOP
&END
&RETURN

The program PROTECT2.CPL can better handle your typing BREAK several
times in a row.

/* PROTECT2.CPL
/* Trap the BREAK key with an on-unit in CPL.
/* Do not allow multiple breaks.
/*
&ON QUITS$ &ROUTINE BREAK_HANDLER
&DATA SEG SQRT
&TTY
&END
&RETURN

Second Edition 7-11

Subroutines Reference I1l: Operating System

7—12

Second Edition

&ROUTINE BREAK HANDLER
&ON QUITS &ROUTINE DUMMY HANDLER
TYPE
TYPE
TYPE You have typed the break key.
&LABEL ALTERNATE ENTRY
&SET_VAR EXIT FLAG := ~
[QUERY ‘Do you wish to exit from the program’]
&IF ~ %EXIT FLAGS% ~
&THEN ~
TYPE Continuing program.
&ELSE ~
&DO
TYPE Exiting program.
&STOP
&END
&RETURN

&ROUTINE DUMMY HANDLER
TYPE
TYPE Please answer the question!
&GOTO ALTERNATE ENTRY
&RETURN

Here is the FORTRAN source for the SQRT program invoked by PROTECT and

PROTECT2.
C SQRT.FTN
C
C This is a small interactive FORTRAN program that is to
C be protected from BREAKs (the QUITS$ condition) by an
C enveloping program written in CPL.
C

REAL INVAL, OUTVAL

1000 WRITE (1, 1005)
1005 FORMAT (/, 'WHAT IS THE NUMBER:')
READ (1, 1010) INVAL
1010 FORMAT (F5.0)
IF (INVAL .EQ. 0.) GOTO 9999
OUTVAL = SQRT (INVAL)
WRITE (1, 1020) INVAL, OUTVAL
1020 FORMAT (’THE SQUARE ROOT OF ’, F5.0, ' IS '/,
GOTO 1000

9999 WRITE (1, 9000)

9000 FORMAT (/ , 'END OF PROGRAM')
CALL EXIT
END

J J

J

)

Condition Mechanism

The REENTERS$ Condition From F77

C REENTER.F77
C
C This program creates an on-unit for the REENTERS$
C condition. If the user breaks out of the program
C during its operation, and then reenters it through
C the PRIMOS REN command, the on-unit is invoked to
C start the program from the proper place.
C
EXTERNAL RENHDLR
EXTERNAL MKONS$P
EXTERNAL MKLBSF
c
CHARACTER*8 CONDITION_NAME/’REENTER$’/
CHARACTER*80 CHAR_STRING
REAL*8 REENTRY POINT
INTEGER*2 INDEX, CONDITION_LENGTH/S/
c
COMMON /REENTRY/ REENTRY POINT
C

C The ”$1000” on the next line refers to statement 1000
CALL MKLBSEF ($1000, REENTRY POINT)
CALL MKONSP (CONDITION_NAME, CONDITION LENGTH,
RENHDLR)

1000 WRITE (1, 1010)

1010 FORMAT (’'Enter a character string:’)
READ (1, 1020) CHAR_STRING

1020 FORMAT (A80)

DO 9999 INDEX = 1, 500
WRITE (1, 1030) CHAR_STRING
1030 FORMAT (A80)
9999 CONTINUE

END
C
C
SUBROUTINE RENHDLR (CP)
C
INTEGER*4 CP
C

EXTERNAL PL1SNL
COMMON /REENTRY/ REENTRY_ POINT
WRITE (1, 1010)
1010 FORMAT (’** Reentering subsystem **’)
CALL PL1SNL (REENTRY_POINT)
RETURN
END

Second Edition 7-13

Subroutines Reference Ili: Operating System

7—-14 Second Edition

Handling QUIT$ From FTN

C PROSQRT.FTN
C
C This program creates an on-unit for the BREAK key.
C The on-unit prevents BREAK from exiting the program
C and instructs the user how to exit.
C
C 1In FIN the on-unit must be declared as an external
C routine.
C
EXTERNAL BKHNDL
C
REAL INVAL, OUTVAL
REAL*8 BRKRTN
C
COMMON /BRKLBL/ BRKRTN
C

CALL MKONSF (/QUITS’, 5, BKHNDL)

C The ”$1000” in the next line refers to statement 1000

CALL MKLBSF (51000, BRKRTN)
1000 WRITE (1, 1005)
1005 FORMAT (/, ’'WHAT IS THE NUMBER:’)
READ (1, 1010) INVAL
1010 FORMAT (F5.0)
IF (INVAL .EQ. 0.) GOTO 9999
QOUTVAL = SQRT (INVAL)
WRITE (1, 1020) INVAL, OUTVAL
1020 FORMAT (’THE SQUARE ROOT OF ‘, F5.0, ' IS ',
GOTO 1000

9999 WRITE (1, 9000)
9000 FORMAT (/ , 'END OF PROGRAM')

CALL EXIT
END
C
C This subroutine handles the QUITS$ condition when it is
C raised. Ordinarily, it would be incorrect to use
C FORTRAN I/O from inside this on-unit, because FTN is
C not reentrant, and we would be disturbing the keyboard
C 1I/0 that was in progress when QUITS was raised. 1In
C this case, however, we use a nonlocal GOTO to return
C to statement 1000 of the main program, and never
C return to the I/0 that was in progress.
C
SUBROUTINE BKHNDL (CP)
C

INTEGER*4 CP

F5.2)

J

3

Condition Mechanism

REAL*8 BRKRTN
COMMON /BRKLBL/ BRKRTN
WRITE (1, 1000)
1000 FORMAT (’YOU MUST TYPE ZERO TO EXIT THIS PROGRAM!’)
CALL PL1SNL (BRKRTN)
RETURN
END

Handling End of File From PL/I

/* EOF.PL1 */

/* This program creates on-units for both the ENDFILE
and QUITS conditions. The on-unit for the end-of-file
condition is set up by PL/I’s ON statement, while the
on-unit for quits is set up by calling MKONSP. The
on-unit for quits closes all files and exits the program.
x/

EXAMPLE: PROCEDURE OPTIONS (MAIN) ;

DCL EMPLOYEE NO FIXED DECIMAL(S):;

DCL (GROSS_PAY, HOURLY RATE) FIXED DECIMAL(S5,2);
DCL HOURS WORKED FIXED DECIMAL(2);

DCL FIXED DECIMAL(S,2);

DCL NUMBER OF EMPLOYEES FIXED BIN(15);

DCL (REPORT, DATAFILE) FILE;

DCL CONDITION NAME CHAR(S5) STATIC INITIAL('QUITS’):
DCL MKONS$P ENTRY (CHAR(S5), FIXED BIN, ENTRY):;

BREAK HANDLER: PROC (CP) ;
DCL CP PTR:
PUT SKIP LIST (’** Aborting program **’);
CLOSE FILE (DATAFILE) ;
CLOSE FILE (REPORT):;
GOTO ABORT_PROGRAM;
END;

ON ENDFILE (DATAFILE)

BEGIN;
PUT SKIP LIST (’'** End of File Encountered **’);
GOTO END_FILE;

END;

CALL MKONSP (CONDITION_NAME, 5, BREAK_HANDLER) ;

OPEN FILE (DATAFILE) TITLE (/DATAFILE’) STREAM INPUT;
OPEN FILE (REPORT) TITLE (’/REPORT’) STREAM OUTPUT:
NUMBER_OF EMPLOYEES = 0;

DO WHILE(’1'B):;

Second Edition 7-15

Subroutines Reference lil: Operating System

GET FILE (DATAFILE)
LIST (EMPLOYEE NO, HOURLY RATE,
HOURS_WORKED) ;

NUMBER _OF_ EMPLOYEES = NUMBER OF_ EMPLOYEES + 1;
GROSS_PAY = HOURS_WORKED * HOURLY RATE;
PUT FILE (REPORT)

LIST (EMPLOYEE NO, HOURLY_ RATE,

HOURS_WORKED, GROSS_PAY) ;
PUT FILE (REPORT) SKIP;
END;

END_FILE:
PUT FILE (REPORT) LIST(NUMBER OF EMPLOYEES) SKIP (3)

ABORT_PROGRAM:
END EXAMPLE;

A CLEANUPS$ On-unit From FTN

The following programs demonstrate the QUIT$ and CLEANUPS$ on-units.
When the BREAK key is typed, a nonlocal GOTO is executed, which causes
CLEANUPS to be raised in the routine SUBA.

CLEANUP.FTN

C
Cc
C This program creates on-units for the QUITS and
C CLEANUPS$ conditions.
C

EXTERNAL BKHNDL
c

REAL*8 BRKRTN

COMMON /BRKLBL/ BRKRTN

CALL MKONSF ('QUITS$’, 5, BKHNDL)
CALL MKLBSF ($1000, BRKRTN)

1000 WRITE (1,1010)

1010 FORMAT (/, 'In the routine: MAIN’)
CALL SUBA
CALL EXIT
END

SUBROUTINE SUBA
EXTERNAL ACLUP
WRITE (1, 1000)
1000 FORMAT (‘In the routine: SUBA’)
CALL MKONSF (’/CLEANUPS$’, 8, ACLUP)
CALL SUBB
RETURN
END

7-16 Second Edition

))

M)

Condition Mechanism

SUBROUTINE SUBB
INTEGER DUMMY
WRITE (1,1000)
1000 FORMAT (’'In the routine: SUBB')
WRITE (1, 1010)
1010 FORMAT (’Type RETURN to exit, BREAK to test
on—-units’)
READ (1, 1020) DUMMY
1020 FORMAT (A2)
RETURN
END

HDLRS.FTN

On-units for the module CLEANUP.FTN

aborting SUBA.

eNeNoNeNeNe Ne!

SUBROUTINE ACLUP (CP)
INTEGER*4 CP, I
WRITE (1, 1000)
1000 FORMAT ('In the cleanup routine: ACLUP’)
DO 1010 I = 1, 50000
1010 CONTINUE
RETURN
END

is raised by the user hitting the BREAK key.

QOO0

SUBROUTINE BKHNDL (CP)
INTEGER*4 CP
REAL*8 BRKRTN
COMMON /BRKLBL/ BRKRTN
WRITE (1, 1000)
1000 FORMAT (’/In the routine: BKHNDL’)
CALL PL1SNL (BRKRTN)
RETURN
END

Second Edition

The routine ACLUP is invoked when a nonlocal GOTO is

The routine BKHNDL is invoked when the QUITS condition

17

Subroutines Reference Il: Operating System

Crawlout Mechanism

7-18 Second Edition

An event known as a crawlout occurs whenever the condition mechanism
reaches the end of an inner-ring stack (a ring other than ring 3) without finding a
selectable on-unit for the condition that has been raised. (Protection rings are
described in the System Architecture Reference Guide.) A crawlout can occur
even when the inner ring has an on-unit for the condition. This occurs if that
on-unit signals another condition, or calls CNSIG$ and returns, causing a
resumption of the stack scan. The scan for on-units resumes on the stack of the
ring that invoked the inner ring. The outer ring receives a copy of the machine
state at the time the condition was raised.

J

Condition Mechanism

Condition Mechanism Routines

This section describes the following subroutines:

Routine Function

CNSIGS Continue scan for on-units.

MKLBSF Convert FORTRAN statement label to PL/I format.
MKONSF Create an on-unit (for FTN users).

MKONSP Create an on-unit (for any language except FTN).
MKONU$ Create an on-unit (for PMA and PL/I users).

PL1$NL Perform a nonlocal GOTO.
r RVONS$F Revert an on-unit (for FTN users).
RVONU$ Revert an on-unit (for any language except FTN).
SGNLS$F Signal a condition (for FTN users).
SIGNLS$ Signal a condition (for any language except FTN).

r Second Edition 7-19

CNSIGS

Subroutines Reference Ill: Operating System

CNSIG$

7-20 Second Edition

CNSIGS is called when an on-unit has been unable to handle the condition
completely. CNSIGS instructs the condition mechanism to continue scanning for
more on-units for the specific condition that was raised after the calling on-unit
returns. The continue-to-signal switch, cfh.cflags.continue_sw, is set in the most
recent condition frame.

Usage

DCL CNSIG$ ENTRY (FIXED BIN);

CALL CNSIGS (code);

Parameters

code

OUTPUT. Standard error code. Nonzero only if there was no condition frame
found in the stack.

Discussion

The continue-to-signal switch is automatically set whenever an ANY$ on-unit is
invoked. Therefore, an ANY$ on-unit need not issue a call to CNSIG$ to
continue to signal.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.
R-mode: Not available.

4 J

r
~

MKLBS$F

MKLBS$F

Condition Mechanism

MKLBSF converts a FORTRAN statement label or an integer variable with a
statement label value into a PL/I-compatible 1abel value. This label value can
then be used with a call to the subroutine PL1$NL to perform a full-function
nonlocal GOTO in a FORTRAN program.

Usage
The FORTRAN usage is

INTEGER*2 stmt
REAL*8 label

CALL MKLBSF (stmi, label)

Parameters

stmt

INPUT. Variable to which a FORTRAN statement number has been assigned
by an ASSIGN statement, or a statement number constant in the format
Sxxoxx.

label

OUTPUT. Contains PL/I-compatible label value for stmit returned by call to
MKLBSF.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

Second Edition 7-21

file:///pXJCXXX

MKONS$F
|]] L] e L L] L] [] - -

Subroutines Reference ill: Operating System

MKONS$F

MKONSF creates an on-unit for a specific condition and is intended for the FTN
user.

Usage
The FORTRAN usage is

EXTERNAL unit
INTEGER*2 cname(16), cnamel

CALL MKONSF (cname, cnamel, unit)

Parameters

cname

INPUT. Array containing name of condition for which on-unit is to be
created.

cnamel
INPUT. Length (in characters) of cname.

unit
INPUT. The external subroutine that is to be the on-unit handler. The

subroutine must take an argument, since the PRIMOS condition mechanism
calls the subroutine as follows:

INTEGER*4 CP
CALL UNIT (CP)

where CP is a pointer to the Condition Frame Header (CFH) that describes the
condition.

Discussion

FORTRAN cannot directly access the CFH through CP. A subroutine written in
PL/I or PMA could pass the desired CFH information, or the MOVEW$
procedure could be used to move the data to an accessible location.

cname and cnamel can be overwritten by the caller once MKONSF has returned,
since they are copied into a stack frame extension.

7-22 Second Edition

J)

Y

)

Caution

MKONS$F

Condition Mechanism

MKONSF should not be called from FORTRAN 77. FORTRAN 77 requires MKONS$P.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

Second Edition 7-23

MKONS$P

Subroutines Reference IlI: Operating System

MKONS$P

MKONSP creates an on-unit for a given condition. It can be used in programs
written in any language except FTN.

Usage

DCL MKONS$P ENTRY (CHAR(*), FIXED BIN, ENTRY);

CALL MKONSP (condname, namelen, handler);

Parameters
The PL/I usage is

condname

INPUT. The name of the condition for which an on-unit is desired. The name
should not contain any blanks.

namelen
INPUT. The length of condname, in characters.

handler

INPUT. The internal or external entry (subroutine) value that is to be invoked
as the on-unit. If the value is an internal procedure, it must be immediately
contained in the block calling MKONS$P. The subroutine must take at least
one argument.

The F77 usage is

EXTERNAL handler
INTEGER*2 namelen
CHARACTER*namelen name/'condname’/

CALL MKONSP (name, namelen, handler)

condname

INPUT. The name of the condition for which an on-unit is desired. The name
should not contain any blanks (input).

7-24 Second Edition

J

J

MKON$P

Condition Mechanism

name

INPUT. A variable to hold condname. Its value should not be altered while
the condition is active.

namelen
INPUT. The length of condname, in characters.

handler

INPUT. The name of the external subroutine that is to become the on-unit.
This subroutine must take at least one argument.

Discussion

An on-unit for the specified named condition is created for the calling block. If
the block already has an on-unit for that condition, the on-unit is redefined.

Caution MKONSP cannot be called from FORTRAN (FTN). FORTRAN requires MKONSF.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

Second Edition 7-25

MKONU$

Subroutines Reference Ili: Operating System

MKONU$

7-26 Second Edition

PL/I and PMA programmers can call MKONUS to create an on-unit for a
specific condition or a default on-unit for the ANY$ condition.

Usage

DCL MKONU$ ENTRY (CHAR(*)VAR, ENTRY)
OPTIONS (SHORTCALL (20));

CALL MKONUS (condition_name, handler);

Parameters

condition_name

INPUT. Name of condition for which on-unit will be created. The name
cannot contain trailing blanks. Any active on-unit for this condition is
overwritten.

handler

INPUT. Entry value representing on-unit procedure to be invoked when
condition_name is raised and this activation is rcached in the stack scan.
Since MKONUS$ does not save the display pointer associated with on-unit
entry, the entry value must be external or declared in the block calling
MKONUS. (An entry constant declared in the block containing the call to
MKONUS satisfies these restrictions.) The handler must take at least one
argument.

Discussion

The stack frame of the caller is lengthened, if necessary, to add the descriptor
block for the new on-unit.

The caller must guarantee that the storage occupied by condition_name will not
be freed until the caller returns or until the activation is aborted by a nonlocal
GOTO. The suggested way of making this guarantee is 1o declare a static
character varying field containing the name of the condition, and to use that field
in the call.

From PL/I the declaration OPTIONS (SHORTCALL(20)) is required for
MKONUS$. The PL/I SHORTCALL option provides additional space needed for
the calling procedure’s temporary storage. OPTIONS(SHORTCALL) provides 8
halfwords of stack by default. MKONUS requires 28 halfwords of stack, and

J

ﬂ

~

Caution

MKONUS$

Condition Mechanism

thus requires an extra 20 halfwords. If the stack size is insufficient, the return
from MKONUS$ causes unpredictable results.

OPTIONS(SHORTCALL) causes the PMA instruction JSXB to be used instead
of the PCL instruction. PCL generates a new stack. JSXB does not generate a
new stack, and is faster, but requires that there be sufficient space on the caller’s
stack. Also, MKONUS can only be called from code executing in V-mode.

PMA and PL/I are the only two languages you can use to call MKONUS.
FORTRAN 77 programmers must use MKON$P and FORTRAN (FTN) programmers
must use MKONSF. PL/I programmers can use either MKONSP or MKONUS.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode; Not available.

Second Edition 7-27

PL1$NL

Subroutines Reference Ili: Operating System

PL1$NL

PL1$NL performs a full-function nonlocal GOTO to the statement identified in
the call. Label values created by MKLBS$F are suitable arguments for PL1$NL.

Usage
The FORTRAN usage is

REAL*S label

CALL PLI$NL (label)

Parameters

label
INPUT. PL/I-compatible label value.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

7-28 Second Edition

r
r

RVONSF

RVONSF

Condition Mechanism

RVONSF disables (reverts) an on-unit for a specific condition. Its effect is
identical to RVONUS but is designed for the FTN user.

Usage
The FORTRAN usage is
INTEGER#*2 cname(16), cnamel

CALL RVONSF (cname, cnamel)

Parameters
cname
INPUT. Name of condition for which the on-unit is to be disabled.

cnamel
INPUT. Length (in characters) of cname.

Discussion

There is no effect if an on-unit does not exist for the named condition, or if the
on-unit has already been disabled.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

Second Edition 7-29

RVONU$

Subroutines Reference lll: Operating System

RVONU$

7-30 Second Edition

RVONUS disables (reverts) an on-unit for a specific condition for any language
except FTN.

Usage

DCL RVONUS$ ENTRY (CHAR(32) VAR);

CALL RVONUS (condition_name);

Parameters

condition_name
INPUT. Name of condition for which the on-unit is to be disabled.

Discussion

Once disabled, an on-unit is ignored during stack frame scanning. The on-unit
can be reinstated only by another call to MKONUS or MKONSF. A call to
RVONUS affects only on-units within its own activation. RVONUS is used from
programs written in languages that support the CHARACTER VARYING data
type.

A call to RVONUS has no effect if an on-unit does not exist for the named
condition, or if the on-unit has already been disabled. A call to RVONUS$ does
not affect on-units in any other activation.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.
R-mode: Not available.

J

)

SGNLS$F

SGNLS$F

Condition Mechanism

SGNLSF signals a specific condition and supplies optional auxiliary information.
SGNLSF is the FIN equivalent of SIGNLS. It is used from programs written in
languages that do not support the CHARACTER VARYING data type.

Usage
The FORTRAN usage is

INTEGER*2 cname(16), cnamel, mslen, infoln, flags
INTEGER*4 msptr, infopt

CALL SGNLSF (cname, cnamel, msptr, mslen, infopt, infoln, flags)

Parameters

cname
INPUT. Name of condition to be signalled.

cnamel
INPUT. Length (in characters) of cname.

msptr

INPUT. Pointer to location of stack frame header describing machine state at
time the specific condition was detected. The uscr does not usually know this
information and should pass the null pointer value (:1777600000).

mslen
INPUT. Length (in halfwords) of stack frame header,

infopt
INPUT. Pointer to location of user-supplicd auxiliary information array. If no
information is supplied, the user should pass the null pointer value
(:1777600000).

infoln
INPUT. Length (in halfwords) of the structure pointed to by infopt.

Second Edition 7-31

SGNLSF

Subroutines Reference ll: Operating System

flags
INPUT. Flag array specifying control action:

Bit Meaning
If =1, on-unit may retum,.

2 If =1, on-unit may return without taking action.
If =1, call is result of crawlout. This bit should never be
set by the user.

4 If =1, signal PL/I I/O (PLIO) condition. User program
should not set.

5-16 Must be 0.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries;: Load NPFTNLB.

R-mode: Not available.

7-32 Second Edition

J

J

)

SIGNLS

Condition Mechanism

SIGNL$

SIGNLS is called to signal a specific condition. The stack is scanned backwards
to find an on-unit for this condition or a default (ANY$) on-unit. SIGNLS is
used for any language except FTN,

Usage

DCL SIGNL$ ENTRY (CHAR(*) VAR, PTR, FIXED BIN, PTR,
FIXED BIN, BIT(16) ALIGNED);

CALL SIGNLS (condition_name, ms_ptr, ms_len, info_ptr,
info_len, action);

Parameters

condition_name
INPUT. Name of condition to be signalled.

ms_ptr

INPUT. Pointer to stack frame header structure defining the machine state at
the time the specific condition was detected. If ms_ptr is null, a pointer to the
condition frame header produced by this call to SIGNLS$ is used.

ms_len

INPUT. Length (in halfwords) of the structure named in ms_p#r. It is not
examined if ms_ptr is null.

info_ptr
INPUT. Pointer to structure containing auxiliary information about the
condition. If no auxiliary information is available, info_ptr should be null.

info_len
INPUT. Length (in halfwords) of structure in info_ptr. It is not examined if
info_ptris null.

Second Edition 7-33

SIGNL$

J

Subroutines Reference lil: Operating System

action
INPUT. A 16-bit halfword that defines action to be taken:

DCL 1 action,

return_ok bit (1),
inaction_ok bit(1),
crawlout bit (1),
specifier bit (1),
mbz bit (12);

MDD

return_ok If =’1’b, on-unit is to be allowed to retum.

inaction_ok If =’1’b, on-unit may retum without taking corrective
action and still expect ‘‘defined” results. (return_ok must

also be ’1°’b.) "\

crawlout If = ’1’b, call to SIGNLS is result of a crawlout. It should
never be set by user.
specifier If = ’1°b, it signals PL/I I/O (PLIO) condition. User
program should not use.
mbz Must be zero.
Loading and Linking information N\

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

7-34 Second Edition “N

)

Exit Condition Control Routines

This section describes the following subroutines:

Routine Function

EX$CLR Disable signalling of EXIT$ condition.

EX$RD Return state of EXITS$ signalling.
EX$SET Enable signalling of EXIT$ condition.

Condition Mechanism
Second Edition 7-35

EX$SCLR

Subroutines Reference lll: Operating System

EX$CLR

7-36 Second Edition

This routine disables the signalling of the EXIT$ condition either after a
program'’s completion or after its termination as the result of a nonlocal GOTO
having been executed.

Usage

DCL EX$CLR ENTRY ();

CALL EX$CLR;

Parameters

There are no parameters.

Discussion

To disable the EXITS$ condition, one call to EX$CLR must be made for every
call to EX$SET, as PRIMOS looks to a single counter that is either incremented
or decremented by calls to these two routines.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.
R-mode: Not available.

J

EX$RD

EX$RD

Condition Mechanism

This routine returns the state of the counter used to control the conditional
signalling of the EXITS$ condition whenever a program EPF (Executable
Program Format) terminates. The routine EX$SET enables the EXIT$
condition; the routine EX$CLR disables it.

Usage

DCL EX$RD ENTRY (FIXED BIN(15));

CALL EXS$RD (transmit_exit_serting);

Parameters

transmit_exit_setting

OUTPUT. The value retumed from the counter. A value greater than zero
enables the signalling of the EXIT$ condition whenever a program terminates.
If the value is zero or negative, the signal is disabled.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

Second Edition 7-37

EX$SET

Subroutines Reference Ill: Operating System

EX$SET

This routine enables the signalling of the EXITS$ condition either after a
program’s completion or after its termination as the result of a nonlocal GOTO
having been executed.

Usage

DCL EX$SET ENTRY ();

CALL EXS$SET;

Parameters

There are no parameters.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.
R-mode: Not available.

7-38 Second Edition

J

‘ Condition Mechanism

Data Structure Formats

The data structures associated with the condition mechanism are described
below. Any user program that uses these structures should examine the version
number in the structure, if one is provided. If the format of a structure changes,
the version number is incremented. The user program can then take appropriate
action if it is presented with structures of different formats.

The Condition Frame Header (CFH)

The following declaration shows the format of the standard condition frame
header:

r DCL 1 cfh BASED, /* standard condition frame header */
2 flags,

backup inh BIT(1),
cond fr BIT(1l),
cleanup_done BIT(1),
efh present BIT(1l),
user_proc BIT(1l),
mbz BIT(9),

3 fault fr BIT(2),
" 2 root,
' 3 mbz BIT(4),
3 seg no BIT(12),
ret_pb PTR OPTIONS (SHORT),
ret_sb PTR OPTIONS (SHORT),
ret 1lb PTR OPTIONS (SHORT),
ret_keys BIT(16) ALIGNED,
after _pcl FIXED BIN,
hdr reserved(8) FIXED BIN,
owner_ptr PTR OPTIONS (SHORT),
cflags,
crawlout BIT(1l),
continue_sw BIT(1),
return ok BIT(1l),
inaction ok BIT(1),
specifier BIT(1),
mbz BIT(11l),
version FIXED BIN,
cond_name_ptr PTR OPTIONS (SHORT),
ms_ptr PTR OPTIONS (SHORT),
info_ptr PTR OPTIONS (SHORT),
ms_len FIXED BIN,
info_len FIXED BIN,
saved cleanup pb PTR OPTIONS (SHORT);

W wwwww

NNV NDN
wwwwww

NNONDNDDNNON

Second Edition 7-39

)

Subroutines Reference Ili: Operating System

flags.backup_inh

flags.cond_fr

flags.cleanup_done

flags.efh_present

flags.user_proc

flags.mbz
flags.fault_fr

root.mbz

root.seg_no

ret_pb

ret_sb

ret_Ib

ret_keys

7—40 Second Edition

Is always '0’b in a condition frame. It is used in
regular call frames to control program counter
backup on crawlout from an inner ring.

Identifies this frame as a condition frame, and
thus is "1’b.

Is ’1’b when this activation has been cleaned up
by the procedure unwind, which helps to affect
nonlocal GOTOs. When this flag is set, the value
of cfh.ret_pb no longer describes the return point
of the activation; that information is available in
cfh.saved_cleanup pb.

Is always *0’b in a condition frame. It is used in
a regular call frame to indicate that an extended
stack frame header containing on-unit data is
present.

Identifies stack frames belonging to user or
library procedures, and hence is ’0’bin a
condition frame.

Reserved and must be ’0’b.
Is always '0’b in a condition frame.
Is reserved and must be '0’b.

Is the hardware-defined stack root segment
number, and indicates which segment contains
the stack root for the stack containing this fault
frame.

Points to the next instruction to be executed
following the call to SIGNLS$ that caused this
condition to be raised, unless flags.cleanup_done
is '1’b, in which case cfh.ret_pb points to a
special code sequence used during stack unwinds,
and cfh.saved cleanup pb contains the former
value of cfh.ret_pb.

Is the hardware-defined stack base of the caller of
SIGNLS. Thus, this value also points to the
previous stack frame on the stack.

Is the hardware-defined linkage base of the caller
of SIGNLS.

Is the hardware-defined keys register of the caller
of SIGNLS.

«
N

J

after_pcl

hdr_reserved

owner_ptr

cflags.crawlout

cflags.continue_sw

cflags.return_ok

Condition Mechanism

Is the hardware-defined offset of the first
argument pointer following the call to SIGNL$
that raised this condition.

Is reserved for future expansion of the
hardware-defined PCL/CALF stack frame header,
of which the totality of CFH is a further
extension.

Is reserved to point to the entry control block
(ECB) of the procedure that owns this stack
frame (usually SIGNLS$).

If ’1’b, this condition occurred in an inner ring (a
ring number lower than the ring in which the
on-unit is executing), but could not be adequately
handled there; otherwise itis '0’b.

Is used to indicate to the condition mechanism
whether the on-unit that was just invoked (or any
of its dynamic descendants) wishes the backward
scan of the stack for on-units for this condition to
continue upon the on-unit’s return. The
subroutine CNSIGS is used to request that
cflags.continue_sw be turned on; user programs
should not attempt to set it directly. This switch
is cleared before each on-unit is invoked. ANYS$
on-units are exceptions; this switch is set before
an ANYS$ on-unit is invoked.

If ’1’b, indicates the procedure that raised the
condition is willing for control to be returned to it
by means of the on-unit simply retumning. If '0’D,
an attempt by an on-unit for this condition to
return causes the special condition
ILLEGAL_ONUNIT_RETURNS to be signalled.
The on-unit can retumn regardless of the state of
cfh.cflags.return_ok if cfh.cflags.continue_sw has
previously been set by a call to CNSIGS. This is
because, in this case, the on-unit return does not
cause a retun to the procedure that raised the
condition, but instead causes a resumption of the
stack scan.

Second Edition 7-41

Subroutines Reference lli: Operating System

cflags.inaction_ok

cflags.specifier

cflags.mbz

version

cond_name_ptr

ms_ptr

info_ptr

ms len

info_len

7—42 Second Edition

If °1’b, indicates the procedure that raised the
condition has determined that it makes sense for
an on-unit for this condition to return without
taking any corrective action. If '0’b, the on-unit
must take some corrective action before
returning, or else continued computation may be
undefined. cflags.inaction_ok never is '1°’b
unless cflags.return_ok is 1’b as well. No user
program should change the state of this or any
other member of c¢fh.cflags.

If '1°b, indicates that this condition is a PL/I I/O
(PLIO) condition that requires a specifier pointer,
as well as a condition name to completely
identify it. This specifier is usually a pointer to a
PLIO file control block. The specifier must be
the first member of the information structure.

Is reserved for future expansion and must be *0’b.

Identifies the version number (and hence the
format) of this structure, and currently is always
1.

Is a pointer to the name (char(32) varying) of the
condition that caused the on-unit to be invoked.

Is a pointer to a structure that defines the state of
the CPU at the time the condition occurred. In
the case of hardware faults, ms_ptr points to a
standard fault frame header (FFH). In the case of
software-initiated conditions, ms_ptr points to a
CFH. The two cases can be distinguished by the
value of ms_ptr —> cfh flags.fault_fr. 1f ’0’b, the
software case obtains; otherwise, the hardware
case obtains.

Is a pointer to an arbitrary structure containing
auxiliary information about the condition. If null,
no information is available. This pointer is
copied directly from the corresponding argument
to SIGNLS. If cflags.specifier is '1’b, the format
of this structure is partially constrained as
described above.

Is the length (in halfwords) of the structure
pointed to by ms_ptr.

Is the length (in halfwords) of the structure
pointed to by info_ptr.

ﬂ
ﬂ

)

Note

Condition Mechanism

saved_cleanup_pb Is valid only if flags.cleanup _done is "1’b, and if
valid is the former value of ¢fh.ret_pb (which has
been overwritten by the nonlocal GOTO
processor).

When writing procedures to interpret the data contained in a CFH structure, be aware
that, in the case of a crawlout, ¢fh.ms_ptr describes the machine state at the time the
condition was generated. The stack history pertaining to that machine state has been lost
as a result of the crawlout.

The machine state extant at the time the inner ring was entered is available, and is
pointed to by cfh.ret_sb. This machine state will be a CFH or an FFH according to
whether the inner ring was entered via a procedure call (CFH) or a fault (FFH). The
value of ¢fh.ret_sb —> cfhflags.fault_fr can be used to distinguish these cases.

In the case in which a crawlout has not occurred, ¢fh.ms_ptr points to the proper machine
state, and no assumptions can be made concerning cfh.ret_sb.

For more information on crawlout, see the Crawlout Mechanism section earlier in this
chapter.

The Extended Stack Frame Header (EFH)

Any procedure (or begin block) that is to create one or more on-units must
reserve space in its stack frame header for an extension that contains descriptive
information about those on-units. This space is allocated automatically by the
Prime high-level language compilers. PMA programs require explicit space
allocation. The format of the stack frame header (with extension) is

DCL 1 sfh BASED, /* stack frame header */
2 flags,

3 backup inh BIT(1),
cond fr BIT(1l),
cleanup done BIT(1l),
efh present BIT(1l),
user_proc BIT(1l),
stk _cbits BIT(1),
lib_proc BIT(1),
ecb_cbits BIT(1),
mbz BIT(6),
fault fr BIT(2),
2 root,
3 mbz BIT(4),
3 seg no BIT(12),
ret_pb PTR OPTIONS (SHORT),
ret _sb PTR OPTIONS (SHORT),
ret lb PTR OPTIONS (SHORT),
ret _keys BIT(16) ALIGNED,

WWWwwwwwww

NN NN

Second Edition 7-43

Subroutines Reference Ill: Operating System

NN NDNDDDDNNDNDDND

DCL

[y
[}
Q
o

DN NDNDDDNON

flags.backup_inh

flags.cond_fr

flags.cleanup_done

7-44 Second Edition

after_pcl FIXED BIN,

hdr reserved(8) FIXED BIN,

owner_ptr PTR OPTIONS (SHORT),

tempsc (8) FIXED BIN,

onunit ptr PTR OPTIONS (SHORT),
cleanup_onunit_ptr PTR OPTIONS (SHORT),
next_efh PTR OPTIONS (SHORT),
reserved(6) FIXED BIN,

cond_bits BIT(16) ALIGNED;

BASED, /* Entry Control Block */
pb PTR OPTIONS (SHORT),

frame size FIXED BIN(15),

stack seg FIXED BIN(12),

arg offset FIXED BIN(1S5),

num args FIXED BIN(15),

1lb PTR OPTIONS (SHORT),

cond_bits BIT(16) ALIGNED,
reserved(6) FIXED BIN(15);

Is examined only if this stack frame is the
crawlout frame on an inner-ring stack, and a
crawlout is taking place. If ’1’b, it indicates that
sfh.ret_pb is to be copied to the outer ring as-is,
so that the operation being aborted by the
crawlout is not retried. If *0’b, sfh.ret pb is set to
point at the PCL instruction so that the inner-ring
call can be retried.

Is '0’b unless the frame is a condition frame (and
is hence described by the structure CFH).

If *1°b, the nonlocal GOTO processor has cleaned
up this frame by invoking its CLEANUPS$
on-unit, if any, and resetting its sfh.ret_pb to
point to a special code sequence to accomplish
the unwinding of this stack frame. When ’'1°b,
the former value of sfh.ret_pb can be found in
sfh.tempsc(7:8) provided sfh.flags.efh_present is
set.

J

N

)

)

Sflags.efh_present

flags.user_proc

flags.stk_cbhits

flags.lib_proc
flags.ech_cbhits

Condition Mechanism

If *1°b, the extension portion of this frame header
has been validly initialized. This extension
portion is marked EFH below. In the present
implementation, this implies that at least one call
to MKONUS has been made, since MKONUS is
responsible for performing the initialization. If
'0’b, members of this structure are not valid and
can be used by the procedure for automatic
storage.

If ’1°b, this stack frame belongs to a nonsupport
procedure; otherwise '0’b. If flags.user_proc is
’1°b, sfh.owner_ptr is guaranteed to be valid and
to point to an entry control block (ECB) that is
followed by the name of the entrypoint.

If *1°b, then cond_bits exists within the stack
frame header and should be used to determine
whether to signal an exception condition. If '0’b,
then flags.ecb_cbits is checked.

If ’1°b, then the procedure is a library routine.

If °1°b, then ecb.cond_bits exists and should be
used to determine whether to signal an exception
condition. If both flags.stk_cbits and
flags.ecb_cbits are 0’b, then flags.lib_proc is
examined.

Note Ifall three of the previous flag bits are reset ("0’b), then PL/I default condition handling

is used.

flags.mbz Is reserved and is "0’b.

flags.fault_fr If *0’b, this frame was created by a regular
procedure call; if *10°b, this frame is a fault
frame (FFH) with valid saved registers; if '01°b,
this frame is a fault frame (FFH) in which the
registers have not yet been saved.

root.mbz Is rescrved and must be *0’b.

root.seg_no Is the hardware-defined segment number of the
stack root of the stack of which this frame is a
member.

ret_pb Points to the next instruction to be executed upon

return from this procedure.

Second Edition 745

Subroutines Reference IlI: Operating System

ret_sb

ret_Ib

ret_keys

after_pcl

hdr_reserved (EFH)

owner_ptr (EFH)

tempsc (EFH)

onunit_ptr (EFH)

Contains the stack base belonging to the caller of
this procedure, and hence also points to the
immediate predecessor of this stack frame.

Contains the linkage base belonging to the caller
of this procedure.

Contains the hardware-defined keys register
belonging to the caller of this procedure.

Is a value pointing two halfwords beyond the
procedure call (PCL) instruction that invoked this
procedure.

Is reserved for future expansion of the
hardware-defined PCL stack frame header.

Points to the entry control block (ECB) of the
procedure that owns this stack frame. This
member must be initialized by the called
procedure itself; the PCL instruction does not do
it.

Is a fixed-position block of eight halfwords to be
used as temporary storage by procedures called
by this procedure that have a shortcall invocation
sequence and hence have no stack frame of their
own,

Points to the start of a chain of on-unit
descriptor blocks for this activation. If
onunit_ptr is null, this activation has no on-unit
blocks, except possibly for the condition
CLEANUPS as described below.

cleanup_onunit_ptr (EFH) If nonnull, this activation has an on-unit for

next_efh (EFH)

reserved

cond_bits

the special condition CLEANUPS$, and
cleanup_onunit_ptr points to the entry control
block (ECB) for that on-unit procedure. It does
not point to an on-unit descriptor block.

Points to the first on a chain of additional
stack frame header blocks, so that these do not
have to be allocated at the beginning of the stack
frame. Presently, next efh is always null.

Is reserved.
PL/I condition enable bits.

The entry control block (ECB) is described in the System Architecture Reference

Guide.

7—-46 Second Edition

Condition Mechanism

The Standard Fault Frame Header (FFH)

Whenever a hardware fault occurs, the Fault Interceptor Module (FIM) is

expected to push a

stack frame with the standard format shown below. The

standard fault frame header structure is

DCL 1 ffh BASED, /* standard fault frame header */

2

RN NDNDDNDDNDN

[\S]

flags.backup_inh

flags.cond_fr

flags.cleanup_done

flags,

3 backup inh BIT (1),

3 cond_fr BIT(1l),

3 cleanup_done BIT(1),

3 efh present BIT(1l),

3 user_proc BIT(1),

3 mbz BIT(9),

3 fault_fr BIT(2),

root,

3 mbz BIT(4),

3 seg_no BIT(12),

ret pb PTR OPTIONS (SHORT),
ret sb PTR OPTIONS (SHORT),
ret_1lb PTR OPTIONS (SHORT),
ret keys BIT(16) ALIGNED,
fault type FIXED BIN,
fault_code FIXED BIN,

fault addr PTR OPTIONS (SHORT),
hdr reserved(7) FIXED BIN,
regs,

3 save mask BIT(16) ALIGNED,
3 fac_1(2) FIXED BIN(31),

3 fac_0(2) FIXED BIN(31),

3 genr(0:7) FIXED BIN(31),

3 xb _reg PTR OPTIONS (SHORT),
saved_cleanup pb PTR OPTIONS (SHORT),
pad FIXED BIN;

frames.

Is ’0’b in a fault frame.

stack when it has cleaned up this fault frame.

Is ignored by the condition mechanism for fault

Is set to '1’b by the procedure that unwinds the

The old value of ffh.ret_pb has been placed in
ffh.saved_cleanup _pb, provided flags fault fris

"10°b.

flags.efh_present Is ’0’b in a fault frame, implying that FIMs

flags.user_proc

cannot make on-units.

Is always ’0’b in a fault frame.

Second Edition

7-47

Subroutines Reference lli: Operating System

flags.mbz
Sflags.fault_fr

root.mbz

root.seg_no

ret_pb

ret _sb

ret_ Ib

ret_keys

Jault_type

Jault_code
Sault_addr

hdr_reserved

7—48 Second Edition

Is reserved and is ’O’b.

Is *10’b if this frame is indeed a standard format
FFH and the registers have been validly saved in
[ffh.regs; else is '01°b,

Is reserved and is always "O’b.

Is the hardware-defined stack root segment
number.

Points to the next instruction to be executed
following a return from the fault. This is
frequently also the instruction that caused the
fault (the case for those faults defined by the
System Architecture Reference Guide as backing
up the program counter). If flags.cleanup done
is '1°’b, ret_pb points to a special unwind code
sequence, and its former value has been saved, if
possible, in ffh.saved_cleanup pb.

Contains the value of the SB register at the time
of the fault, and hence usually points to the
predecessor of this stack frame.

Contains the value of the LB register at the time
of the fault.

Contains the value of the KEYS register at the
time of the fault. This can be used to determine
in what addressing mode the fault was taken.

Is set by each FIM to the offset in the fault table
corresponding to the fault that occurred (for
example, a process fault results in a fault type of
’04°’b3). This datum cannot be guaranteed valid,
as it is not set indivisibly with the
hardware-defined header information. Since
FIMs usually set fault type just after saving the
registers, it is very unlikely for fault_type to be
invalid.

Is the hardware-defined fault code produced by
the fault that was taken.

Is the hardware-defined fault address produced
by the fault that was taken.

Is reserved for future expansion of the
hardware-defined stack header.

J)

N\

file:///nffh.saved

h)

)

regs

saved_cleanup_pb

pad

Condition Mechanism

Is valid if flags fault_fris *10’b, and if valid,
contains the saved machine registers at the time
of the fault in the format produced by the RSAV
instruction. For more information see the
Instruction Sets Guide.

Is valid only if flags.fault fris *10’b and
flags.cleanup done is ’1’b, and if valid, contains
the value that was in ret_pb before the latter was
overwritten by the procedure that unwinds the
stack.

Exists only to make the size of this structure an
even number of words.

The On-unit Descriptor Block

Each on-unit created by an activation is described to the condition mechanism by
a descriptor block (except for the special condition CLEANUPS$, which has no
descriptor). These descriptor blocks are threaded together in a simple linked list,
the head of which is pointed to by sfh.onunit_ptr. The format of an on-unit

descriptor is

DCL 1 onub BASED, /* standard onunit block */
2 ecb_ptr PTR OPTIONS (SHORT),
2 next ptr PTR OPTIONS (SHORT),
2 flags,

3
3
3
3
3

not_reverted BIT(1),
is_proc BIT (1),
specify BIT(1l),

snap BIT(1),

mbz BIT(12),

2 pad FIXED BIN,

N

cond name ptr PTR OPTIONS (SHORT),

2 specifier PTR OPTIONS (SHORT) :

ecb_ptr

next_ptr

flags.not_reverted

Points to the entry control block (ECB) that
represents the procedure or begin block to be
invoked when this on-unit is selected for
invocation.

Points to the next on-unit descriptor on the chain
for this activation. A null pointer indicates the
end of the list.

Is ’1’b if this on-unit is still valid and has not
reverted; is "0’b if the on-unit has been reverted
and is to be ignored by the condition-raising
mechanism.

Second Edition 7—49

Subroutines Reference lll: Operating System

7-50 Second Edition

[flags.is_proc

Slags.specify

flags.snap

flags.mbz
pad

cond_name_ptr

specifier

Is ’1°b if this on-unit was made via a call to the
primitive MKONUS; is "0’b if it was made via
the PL/I ON statement.

Is *0’b if the condition name fully identifies
which condition this on-unit block is to handle.
Is *1’bif onub.specifier is a further qualifier for
the condition.

Is *1’b if the snap option was specified in the
PL/I ON statement that created this on-unit; '0’b
otherwise.

Is reserved and must be '0’b.
Is reserved and must be 0.

Is a pointer to a varying character string
containing the condition name for which this
on-unit is a handler. This name may be an
incomplete specification if onub flags.specify is
'T’b.

Is valid only if onub flags.specify is *1°b, and if

valid, qualifies the condition name that is pointed

to by onub.cond _name_ptr. The primary use of
onub.specifier is for PL/I I/O conditions, in
which the specification of the condition requires
both a name and a file descriptor pointer.

4

J

J

A

r

Semaphores and Timers

Realtime and Interuser Communication Facilities

Semaphores

Note

PRIMOS supports user applications that have realtime requirements or that need
to synchronize execution with other user programs.

The subroutine descriptions are divided into three parts. The first part describes
routines that manipulate semaphores. The second part describes a routine used
to signal the completion of specific timed intervals. The third part describes
routines that suspend (sleep) a process for a specified interval.

A set of subroutines provides access to Prime’s semaphore primitives (wait and
notify) and to internal timing facilities. The semaphore facility provides a means
to coordinate 1wo or more processes. Associated timer subroutines allow you to
wait a process on a semaphore for a specified interval or until notified.

Another method of coordinating two or more active processes is to use event
synchronizers and their associated timers. Although they perform many of the same
operations, event synchronizers and semaphores are independent and fundamentally
different facilities. Synchronizers are user resources. Semaphores are shared system
resources. Synchronizers are described in Subroutines Reference V: Event
Synchronization.

On time-sharing systems where more than one process can be active at the same
time, there is often a need to coordinate the execution of two or more processes
with one another. Such coordination is required when two or more processes
cooperate to solve a common problem, or when two Or more processes must use
a common, limited resource.

When two or more processes are working together as part of a larger system or to
solve a common problem, it sometimes happens that one or more of the

Second Edition 8-1

Subroutines Reference Ill: Operating System

processes encounter a situation in which they cannot do any further work until
some event, external to the process, happens. An example of this is a spooler that
picks up print requests from a queue. When there are requests in the queue, the
spooler services them. However, when the queue becomes empty, it can no
longer do useful work and must wait for another process to give it something to
do.

There are many resources on a time-sharing system that must be shared by all of
the running processes. Included in the list are such things as devices that can
have only one user at a time (such as a paper-tape punch), a section of code that
performs a single operation, or files that are updated and read simultaneously by
several programs.

The semaphore facility consists of some blocks of memory, which are called
semaphores, and a set of software routines or hardware instructions that perform
various operations on these blocks. There is no real connection between a
semaphore and the event or resource with which it is associated. The use to
which a semaphore is put is determined solely by the application programs that
use it. All of the cooperating programs must agree on the meaning (or use) of a
semaphore and use it the same way.

How a Semaphore Works

A semaphore consists of two parts: a counter and a queue (see Figure 8-1).

Counter -1

Queue

10801.D100822LA

Figure 8—1. Resource Semaphore at Start

8-2 Second Edition

J

D

Semaphores and Timers

When a process wishes to wait for an event to happen or a resource to become
available, it issues a wait call for the semaphore associated with that event or
resource. The wait call will increment the counter for that semaphore and test its
value. If the counter is less than or equal to 0, the process is allowed to proceed
immediately and is not placed on the semaphore’s queue (see Figure 8-2).

Counter 0

Queue

10802.D10082.2LA

Figure 8-2. Resource Semaphore After Call by One Process (Process 1 is
Using the Resource, No Processes Waiting)

If, however, the counter is greater than or equal to 1 after being incremented,
then the process is placed on the wait queue for the semaphore (see Figure 8-3).
The process will not run again until it leaves this queue. Processes are placed on
the queue in priority order with higher priority processes being placed closer to
the head of the queue. Within a given priority, the processes are treated as a real
queue — first in, first out.

Second Edition 8-3

Subroutines Reference Ill: Operating System

84 Second Edition

Counter 1

Queue Process 2

10803.D100822LA

Figure 8-3. Resource Semaphore After Call by Second Process (First Process
is Using the Resource)

When a process wishes to report that an awaited event has occurred, or that a
resource has become available for use by other processes, it will call a notify
routine for the semaphore associated with that event or resource (see Figure
8—4). The notify routine will first test the value of the counter for that
semaphore. If the counter is greater than O (indicating that one or more processes
are in the semaphore’s queue), then the routine will remove one process from the
top of the queue, thereby allowing that process to run again. Whether a process
was dequecued or not, the routine will then decrement the counter by one.

J

)

Semaphores and Timers

Counter 0

Queue

108.04.D100822LA

Figure 8—4. Resource Semaphore After Notify by One Process (Process 2 is
Now Using the Resource)

Normally, a semaphore’s counter is preset to some value before the semaphore is
used by any process. The value to which it is set depends on the nature of the
software that will use the semaphore and on the purpose of the semaphore.
Typical initial values are —1 and 0. A value of —1 allows the first process that
waits on the semaphore to proceed immediately without being queued, as shown
in Figures 8—1 through 8—4. This effect is desirable if the semaphore is used to
coordinate the use of a shared resource. The resource is considered available
until a process indicates its intent to use it. A value of Q is appropriate for wait
situations in which a process must wait until some condition exists or until an
event occurs. The process that must wait for an event to happen does a wait
operation on the semaphore, and is immediately put on the queue since the
counter becomes greater than 0. When another process determines that the
awaited event has occurred, it will notify the same semaphore, thus allowing the
queued process to run.

When a process opens a named semaphore, and that process is the first to open
that semaphore, then the SEM$OP routine will preset the semaphore’s counter to
a value of 0. If an initial value of -1 is required, then the process should notify
the semaphore once after opening it. For named semaphores, SEM$OU also
allows opening semaphores with initial values that are negative or 0. The
minimum value is —32767. If the semaphore must be reset to its initial value of 0
at a later time, then a call can be made to the drain routine (see SEM$DR below).

Second Edition 8-5

Subroutines Reference lil: Operating System

Cooperation of Processes

It should be remembered that a semaphore is a structure that cooperating
processes can use to control their access 10 resources, or to coordinate their
execution. The operating system does not verify that the semaphore is being used
correctly since the association between the semaphore and the event or resource
is merely a convention adopted by the processes involved.

In order for the semaphore facility to work correctly, all processes that want to
wait for an event or a resource must first wait on its associated semaphore before
using the resource or assuming that the awaited event has occurred There is
nothing to stop the careless programmer from using a shared resource without
first waiting on the appropriate semaphore. Such coding practices will most
likely cause the entire subsystem of processes to malfunction.

Prime Semaphores

8-6

Second Edition

On Prime computers, a semaphore consists of two consecutive, nonpageable
16-bit halfwords of memory. The wait and notify operations are implemented in
firmware and are usable by supervisor software only, So that users can use the
semaphore facility, four calls have been created that perform the wait and notify
operation on a set of semaphores that are reserved by the operating system for
user programs;

e SEM$WT
e SEMS$TW
e SEM$TN
e SEMS$NF

There are 1024 named semaphores available to user processes, and 65 numbered
semaphores.

Numbered Semaphores and Timers

Intcrnal to PRIMOS is an array of 65 numbered semaphores reserved for the
use of user processes. All reference to these semaphores is by the index of the
semaphore, an integer from O to 64. Other than ensuring a valid semaphore
number, PRIMOS makes no stipulations for semaphore use such as which users
can access which semaphores, etc. Allocation and cooperative use of the
semaphores is strictly under user control.

Of the 65 user semaphores, up to 15 can be uscd at any time as timed
semaphores, that is, semaphores that are periodically notified by the system

))

D

Semaphores and Timers

clock process. (See the SEM$TN routine.) Again, 2llocation of timed
semaphores is on a first-come/first-served basis, and nothing is done to prevent
incorrect use of a timed semaphore.

Numbered semaphores are assigned by the operating system as wait or notify
calls made to those numbers. No open or close request is necessary. It is your
responsibility to use the number that has been agreed upon for a particular
resource.

Named Semaphores

The operating system maintains a pool of semaphores that it can assign to user
processes. When a process wishes to use one or more named semaphores, it
must first ask the operating system to assign it to the process. The process
requests access to named semaphores through an open routine. The user can
request that two or more semaphores be assigned to it in a single call to this
routine. The operating system retumns a set of numbers to the process if it decides
that the requested semaphores can be assigned to that process. The process uses
these numbers in all subsequent calls to semaphore routines to indicate on which
semaphore to perform the semaphore operation.

The operating system can tell when different processes wish to use the same set
of semaphores by examining the parameters that they include in the call to the
open routine.

See SEM$OP and SEM$OU below for more details on how to use the open call.

After a process has opened a set of semaphores, it can do any number of
operations on those semaphores. The possible semaphore operations are given in
the descriptions of the subroutines.

When a process has finished using the named semaphores that were assigned to
it, it requests that the operating system close those semaphores, thus making
them inaccessible to the process. When all processes finish using a given
semaphore, then the operating system closes it and returns the memory space
used by that semaphore to the operating system’s free pool so that it may be
assigned to other processes.

When a process logs out, all named semaphores that were opened by the process
but not closed are closed automatically. If this process was the last user of a
semaphore, the space used by the semaphore is returned to the free pool.

The routines that handle named semaphores are not available in R-mode.

Second Edition 8-7

Subroutines Reference 1li: Operating System

Coding Considerations

8-8

Second Edition

Numbered Versus Named Semaphores

The operating system maintains two different sets of semaphores, and processes
must access these sets by different methods. One set is available to any process
that wishes to use it, and its semaphores are identified by number. When a
process wishes to use one of these semaphores, it specifies the number of the
desired semaphore in the parameter list of the semaphore routines. This set of
semaphores is called numbered semaphores. Numbered semaphores are easy to
use, but they have a major drawback: there is nothing to prevent other processes
from using the same semaphore for different purposes. Therefore, all users of the
system must agree on how each numbered semaphore is to be used; otherwise,
confusion will result.

To eliminate the problems caused by the sharing of numbered semaphores, a
second set of user semaphores was created. These are called named semaphores
because they are associated with a file. Semaphores in this set cannot be used by
a process until they are opened. Opening a semaphore means that the process
must call the routine SEM$OP or SEM$OU, which will assign semaphores from
the pool for the process to use. Each routine returns a set of numbers that can be
used instead of numbered semaphore numbers in all other semaphore routine
calls. Only valid semaphore numbers that have been assigned to a process by
SEMS$OP or SEM$OU can be used in subroutine calls that manipulate named
semaphores. An attempt to use any other numbers will result in an error return
from the routine.

To open a set of named semaphores, a routine must associate them with a file
system object. SEM$OP will open a set of named semaphores and associate
them with the name of a file in the current dircctory of the process performing
the open operation. SEM$OU will open a set of named semaphores and associate
them with a file open on a particular file unit. In both cases, the process must
have read access to the file.

Timers and Timeouts

When a process waits on a semaphore, it anticipates that it will be notified within
a reasonable amount of time. If, for some reason, the process that is going to
notify the semaphore fails to do so, all processes waiting on that ssmaphore will
continue to wait, possibly for a very long time. To guard against processes
waiting forever, a timer mechanism can be used.

Named Semaphore Timers: To prcvent a process from waiting forever on
a named semaphore, a special wait routine exists (called SEM$TW), which takes
a semaphore number and a time value as parameters. The process waits on the
specified semaphore until the semaphore is notified or until the specified amount

4)

AR

)

Semaphores and Timers

of realtime has passed. The routine returns a value to the process that indicates
why the process was allowed to continue. A value of O means that the semaphore
was removed from the wait queue because of a notify by another process. A
value of 1 means that the process was allowed to continue because the specified
time had elapsed without a notify on that semaphore. It is also possible for a
value of 2 10 be returned; this return value indicates that the process was stopped
by someone pressing the BREAK key or CONTROL-P at the terminal
controlling the process, and then typing START. This sequence causes the
operating system to abort the process, thus removing it from the semaphore on
which it was waiting, followed by a restart of the process at the wait call.

Numbered Semaphore Timers: The timer facility for numbered
semaphores allows a semaphore to be automatically notified after a certain
amount of time has passed. A user process tells the operating system, through a
subroutine call, that a timer is to be associated with a numbered semaphore. The
process also specifies the amount of time that should pass before the operating
system notifies the semaphore. When this amount of time has passed, the
operating system notifies the semaphore.

Note that if another method is not used besides the semaphore to indicate that the
awaited event has actually occurred, a notify caused by a timer cannot be
distinguished from a notify caused by a process. The processes using the
semaphore should, therefore, be coded so that they can verify that a notify by
another process has occurred before using the resource protected by the
semaphore. The action that is taken when a timer notifics the semaphore should
be agreed upon by all of the processes using the timed semaphore.

Pitfalls and How to Avoid Them

External Notifies

When a semaphore is notified for some reason other than an explicit call to the
notify routine, that notify is called an external notify; that is, it originated from a
source external to the processes that are using the semaphore. Some of the
reasons why an external notify may occur are listed here.

Expiration of a Timer: When a timer is sct for a numbcred semaphore, and
that timer expires, the operating system will notify the scmaphore. This
semaphore will look like an external notify to the processes that use the
semaphore; the fact that the notify is external can be detected if the processes are
coded properly. (See the Coding Suggestion scction, below.)

The notify caused by a timeout can be useful in cases when the process that is
supposed to notify the semaphore is prone to being aborted.

Second Edition 8-9

Subroutines Reference Ill: Operating System

8-10 Second Edition

The notify initiated by the operating system prevents processes from waiting
forever.

Use of timers with named semaphores causes a code to be returned to the process
that indicates when a timeout has occurred.

Malfunctioning Process: Like all other programs, processes that are
supposed to be using a semaphore sometimes do not behave properly.
Malfunctioning programs can do extra notify calls and thereby cause what
appear to be external notifies. Also, processes that are not supposed to be using a
numbered semaphore may decide to use it anyway. Unless the semaphore can be
protected from such interference, then what appears to be an external notify will
result.

Process Quit: The semaphores that a user process can access on a Prime
system are called quittable semaphores. This means that a process that is
waiting on a semaphore can be stopped by pressing the BREAK key or
CONTROL-P at the terminal controlling the process. When a process is stopped
by this means, and then continued (by using the PRIMOS START command),
the process will reexecute the wait operation.

Coding Suggestion: Since semaphores can be notified by breaks and
timeouts as well as by explicit calls to SEM$NF, and since this could cause
malfunctions in a subsystem, it is always best to code in such a way that this
situation can be detected. This means that a process should not rely solely on the
semaphore to indicate that a resource is really available or that an event has
actually occurred. A good practice is to have one additional method, besides the
semaphore, to indicate what the current state of the resource or event is.

One such method is to have a halfword in shared memory (accessible by all
cooperating processes) that is set to indicate that the event has really occurred or
that a resource is free. Before a process notifies a semaphore, it sets this
halfword to an agreed value. When the process is allowed to proceed from a
semaphore wait, it should check the value contained in that halfword. If the
halfword contains the value, it will know that the semaphore was notified by a
cooperating process, and not by the operating system. In this case, the process
will clear the halfword, do its processing, and reset the halfword to the
agreed-upon value just before notifying the semaphore. If a process proceeds
from a wait call and the halfword is not set to the agreed-upon value, it can
assume that the operating system notified the semaphore and can reissue the wait
call.

Infinite Waits

It is possible to create a situation in which one or more processes are waiting on
a semaphore, and there are no processes running that will ever notify that
semaphore. The following are methods of creating this situation.

Multiple Waits: If a process issues a wait call, and is not queued, and then
continues to reissue the wait call without intervening notifics, that process will

J

“N\

-~

Semaphores and Timers

eventually cause the semaphore count to become greater than 0 and the process
will wait. This of course assumes that there is not another process somewhere
doing multiple notifies.

In the case of a resource-protection semaphore, if all other processes obey the
rules, they will wait on this semaphore before they notify it. They will therefore
queue up behind the multiple-waiter process. Eventually, all the processes of the
subsystem will become queued on the semaphore queue, and no process will
remain to notify the semaphore.

Aborted Notifiers: Another way of causing infinite waits is to abort a
process that would, under normal circumstances, notify a semaphore. If this is
the only process that will do notifies on the semaphore, then all other processes
that wait on it will wait forever.

Coding Suggestion: Infinite waits can be avoided by associating a timer
with the semaphore. This will guarantee that one or more processes will
eventually be removed from the wait queue. Extra coding must be done in the
processes, however, so that a timeout can be identified as such, and so that
appropriate action can be taken. This code should determine whether the process
that should have notified the semaphore is still running or not. If it is running,
the notify is considered external and the process reissues the wait call. If the
potential notifiers have all been aborted, appropriate recovery action should be
initiated.

Deadly Embrace

When two or more semaphores are being used, a situation called deadly
embrace can occur. This happens when two processes gain rights to use a
resource by waiting on the appropriate semaphore for that resource, and then
each attempts to acquire the resource that is being used by the other process.
Neither process will ever notify the semaphore for the resource it holds (it is
waiting to get access to a second resource), and no other process will ever notify
the semaphores (since each resource is held already by one of the two processes).
Therefore, both processes will wait forever.

This situation can neither be detected nor prevented by the semaphore facility. It
can be prevented, however, by the processes using the semaphores, if the
following procedure is used.

Each semaphore that a system of processes will use is assigned a different
number; this number will be called the semaphore’s level number. Processes can
only issue a wait call for a semaphore whose level number is greater than the
level number of any semaphore it has waited on but has not yet notified. For
example, if the level numbers for three semaphores are 1, 2, and 3, and a process
has waitcd on the second semaphore (level 2), but has not yet notified it, then the
process can legally issue a wait for the third semaphore (level 3) but not for the
first, since level 1 is numerically less than level 2.

Second Edition 8-11

Subroutines Reference lll: Operating System

Locks

8-12 Second Edition

This technique, if strictly followed, makes deadly embrace situations impossible.
It is sometimes practical for processes to call a routine that checks for level
number violations before issuing a wait call. If all processes use this routine
instead of the wait routine, then deadly embrace is prevented.

Locks, like semaphores, are a method that programs or processes can use to
coordinate their use of some resource. Before a process attempts to use a
resource that is protected by a lock, it calls a routine that grants or denies
permission to use the resource or causes the process to wait until the resource
becomes free. When the process has been given permission to use the resource, it
is said to hold the lock on that resource. When the process is through using the
resource, it calls another routine to indicate that it is done. This operation is
called giving up the lock, or releasing the lock, on that resource.

Various types of locks exist, some of which will be discussed in this section.

Some types of locks behave very much like semaphores and, in fact, many types
of locks can be coded with the use of semaphores. Semaphores, unlike locks,
allow a small, well-defined set of operations to be performed, but the uses and
types of locks that can be coded vary greatly.

Mutual Exclusion

Mutual-exclusion locks are used when only one or a few processes are allowed
to use a resource at any given time. When a process requests ownership of a lock
for the resource, it is given the lock if no other process currently holds it. If the
lock is held by another process, all others must wait until the one holding the
lock gives it up.

This type of lock can be implemented directly with the use of semaphores.
Requesting the lock is equivalent to a wait operation on a semaphore; giving up
the lock is equivalent to a notify of that scmaphore.

Since external notifies may occur, it is a good practice to expect them and to
code in such a way that they can be detected and ignored.

N1 Locks

N1 locks are used to protect objects that can be read and modified
simultaneously, such as files and databases. This type of lock allows any number
of users to read the object, or one process to modify the object. In the PRIMOS
filing system, this is referred to as an N readers or one writer lock. When a
process requests permission to read the object, such permission is granted

J

J

Semaphores and Timers

immediately, as long as there is not currently a process modifying it. Requests to
gain access to the object for modification are granted only if there are no other
readers or writers using the object. If another process is using the protected
object, the writer is placed on a queue and must wait until all current users of the
resource indicate that they are done. If a writer is waiting to use the resource,
then no other requests for use of the object are granted until that process has used
the object. This prevents readers from gaining access to the object and causing
the writer’s request to be delayed indefinitely.

When a writer is given access to the object, all other requests for access are
queued. When the writer finishes, the other requests are processed.

Use of an N1 lock on a file eliminates data loss that can sometimes occur when
two or more processes are allowed to update the same file simultaneously.

Producers and Consumers

In many computer systems, certain processes create work that must be processed,
such as device drivers that read data from a device that must be routed to the
correct place, or print programs that place data files into spool queues to be
printed. These work-producing processes are called producers.

Other processes in a system process the work created by the producers. These
processes are called consumers. Examples of consumers include a user process
that manipulates data coming into the system from a peripheral device, or a
spooler that prints files in response to a user’s print requests.

The coordination required between producer processes and their corresponding
consumer processes can be achieved with the use of producer-consumer locks.

Producers call a routine that indicates that there is work to process. The routine
kecps track of the number of producers that have called it; each call indicates
that another unit of work is available. Consumers, on the other hand, call a
routine that checks to see if there is any work to do. If there is no work, the
routine causes the consumer process to wait until there is work, that is, a
producer calls the I-have-work-to-do routine. If there is work to do, the
consumer process is allowed to continue, and the counter of units of work left to
do is decremented.

This lock can be coded directly with semaphores. A semaphore, with its counter
initialized to 0, serves as the locking mechanism. Producers notify the
semaphore, causing it to become negative; consumers wait on the semaphore,
causing it to risc toward 0. If there is no work to do (semaphore counter equal to
0), then a consumer will be queued, when it waits on the semaphore, until work
becomes available.

Note that there can be any number of producers or consumers. If two or more
consumers wait for work, and there is none to do, then the semaphore counter
will contain a value equal to the number of queued consumer processes. A notify
by a producer allows one of the consumers to proceed.

Second Edition 8-13

Subroutines Reference Ill: Operating System

8—14 Second Edition

Since semaphores are subject to external notifies, it is advisable that a counter,
other than the counter that is a part of the semaphore, be maintained to indicate
how much work is available for consumer processes. Producers increment this
counter; consumers take work from the work queue and decrement this counter.
If a consumer is notified out of the semaphore queue and the counter does not
match the semaphore counter, then it can assume that an external notify has
occurred.

Record Locks

When many processes must update a file, and speed is important, it is not
practical to use a lock that protects the entire file, since any update request would
lock all other processes out of the file. Considcrable overlap in processing can
usually be achieved if just the portion of the file that is being updated by a
process is locked. Usual units to lock are the record or the page being updated.

If the file is large, then it becomes impractical or impossible to have an
individual lock for each record or page to be protected. One way of overcoming
this difficulty is to assign locks from a pool on a temporary basis. When a
process wishes to update a record, for example, it requests a lock by passing the
record number in question to the lock routine. If there is currently no one holding
a lock on that record (the lock routine scans its list of locks being held by other
processes), then a lock is assigned from a free pool and the record number
supplied is remembered. If a lock is requested for a record that is currently
locked by another process, then the second and subsequent requesters of the lock
are forced to wait. When the last holder of a lock gives up the lock, and there are
no other processes waiting to use the record protected by that lock, then the lock
itself is returned to the pool of free locks. It can then be used for other record
locks.

In general, the pool of locks needs to be as large as the expected maximum
number of records that can be locked at any given time. It is the lock routine’s
responsibility to manage the lock pool and to deal with the problems that arise
when there are no more free locks in the pool. One method of dealing with this
situation is to use a no-free-locks semaphore. If there are no free locks in the
pool, the process requesting the lock is forced to wait on this semaphore. The
lock routine notifies this semaphore when a lock becomes available.

Notice that record locks are really mutual-cxclusion locks; however, the object
that is being protected by any given lock changes with time. The lock routine
must include a small data base that is used to remember what is being protected
by each lock.

J

Y

r
r

Semaphore Routines

Semaphores and Timers

This section describes the following subroutines:

Routine

SEMS$CL
SEMS$DR
SEMS$NF
SEM$OP
SEM$OU
SEM$TN

r SEMSTS

SEMS$TW
SEM$WT

Function

Release (close) a named semaphore.

Drain a semaphore.

Notify a semaphore.

Open a set of named semaphores.

Open a set of named semaphores.

Periodically notify a ssmaphore.

Return number of processes waiting on a semaphore.
Wait on a specified named semaphore, with timeout.

Wait on a semaphore.

Second Edition 8-15

SEM$CL

Subroutines Reference lil: Operating System

SEM$CL

SEMS$CL releases (closes) a semaphore.

Usage

DCL SEMS$CL ENTRY (FIXED BIN, FIXED BIN);

CALL SEMSCL (snbr, code);

Parameters

snbr

INPUT. A semaphore number; it must be a number assigned to a named
semaphore by the SEM$OP or SEM$OU routine,

code
OUTPUT. Standard error code. Possible values are

E$OK Success.
E$BPAR An invalid value was supplied for snbr.
Discussion

When a process no longer needs a named semaphore, it can tell the operating
system that it is done with the semaphore by calling SEM$CL. This call closes
the semaphore. After this call, the specificd semaphore number cannot be used
again by the process unless that same number is reassigned by another call to
SEM$OP or SEM$OU.

When a process logs out, all semaphores that were opened by that process but
not explicitly closed are automatically closcd by the operating system.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

8—-16 Second Edition

J

)

SEMS$DR

SEM$DR

Semaphores and Timers

SEMSDR resets (drains) the specified semaphore counter to 0.

Usage

DCL SEM$DR ENTRY (FIXED BIN, FIXED BIN);

CALL SEMS$DR (snbr, code);

Parameters

snbr

INPUT. A semaphore number; it can be either a number in the allowable
range for numbered semaphores (0~64), or it can be a number assigned to a
named semaphore by the SEM$OP or SEM$OU routine.

code
OUTPUT. Standard error code. Possible values are

E$OK Success.
E$BPAR An invalid value was supplied for snbr.
E$BDAT Indicates bad data supplied; the System Administrator
should be notified.
Discussion

The counter is set to 0 if, at the time of the SEM$DR call, the semaphore’s
counter is less than or equal to 0. If, however, the counter is greater than 0, then
notifies are done on the semaphore until the counter reaches 0. This causes all
processes that were waiting on the semaphore to be removed from the wait
queue of the semaphore.

It is possible for processes to be placed on the wait queue while this call is
executing. These added processes may not be removed when the SEM$DR call
returns to its caller.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared librarics: Load NPFTNLB.
R-mode: No special action.

Second Edition 8-17

SEMS$NF

Subroutines Reference lil: Operating System

SEM$NF

8-18 Second Edition

SEMS$NEF releases the next process waiting on a semaphore (notifies the
semaphore).

Usage

DCL SEMS$NF ENTRY (FIXED BIN, FIXED BIN);

CALL SEMSNF (snbr, code);

Parameters

snbr

INPUT. A semaphore number; it can be either a number in the allowable
range for numbered semaphores (0—64), or it can be a number assigned to a
named semaphore by the SEM$OP or SEM$OU routine (FIXED BIN).

code
OUTPUT. Standard crror code. Possible values are

E$OK Success.

E$BPAR Indicates that an invalid value was supplied for snbr.

E$SEMO Indicates that the scmaphore count became too small to be
decremented.

E$BDAT Indicates that bad data was supplied; the System
Administrator should be notified.

Discussion

The notify and wait operations are the basic functions that can be performed on a
semaphore. A notify decrements the semaphore’s counter and releases the first
process from the wait queue, if there are any processes waiting.

A wait increments the semaphore’s counter and places the process on the
semaphore’s queue if the counter becomes greater than 0. Processes are queued
first-in/first-out within process priority; higher priority processes are queued
before those with lower priority.

The wait procedure is SEM$WT. This is described later in this chapter.

J

“

SEMSNF

Semaphores and Timers

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

Second Edition 8-19

SEMOP, SEMOU

Subroutines Reference Ili: Operating System

SEM$OP
SEM$OU

These routines open a ssmaphore.

Usage

DCL SEMS$OP (CHAR(32), FIXED BIN, FIXED BIN, (*)FIXED BIN,
FIXED BIN);

CALL SEMS$OP (fname, namlen, snbr, ids, code);

DCL SEM$OU (FIXED BIN, FIXED BIN, (*)FIXED BIN, FIXED BIN,
FIXED BIN);

CALL SEMS$OU (funit, snbr, ids, init_val, code);

Parameters

Jfname
INPUT. A filename, as discusscd below.

Sunit
INPUT. The number of a file unit that has already been opened.

namlen
INPUT. The number of characters in fname.

snbr

INPUT. A number that specifies how many semaphores are to be opened by
this call.

ids
OUTPUT. An array of semaphore numbers; one number is retumed for each

semaphore that was successfully opened. There must be at least snbr
elements in ids.

init_val
INPUT. The initial value (-32767 to 0) to be assigned to the semaphore.

8-20 Second Edition

J

J

SEMS$OP, SEMSOU

Semaphores and Timers

code
QUTPUT. Standard error code. Possible values are

E$OK Success.

E$BPAR An invalid value was supplied for snbr, namlen, or
init_val.

E$IREM A file that is on a remote disk was specified in the fname
parameter — remote files cannot be used as parameters to
this call.

E$FUIU Either the user has all available file units opened, or there

are no available named semaphores.
E$UNOP Unopened file unit.
E$SBUNT Bad file unit.

It is also possible that code will be set to any error code that can be returned
by the SRCH$$ routine.

Discussion

To open a set of named semaphores, a call must associate them with a file system
object. SEM$OP opens a set of named semaphores associated with the name of a
file in the current directory of the process performing the open operation. If the
process has at least read-access rights to the file, it will be assigned the
semaphores. Each semaphore is initialized to zero. SEM$OU opens a set of
named semaphores, associating with them a file open on a particular file unit. As
before, if the process has at least read-access rights to the file, it is assigned the
semaphores. Unlike SEMOP, SEMOU allows each semaphore within the set
to be initialized to a nonpositive value, not less than —32767 decimal. All calls to
either SEM$OP or SEM$OU that use the same file result in the same semaphore
numbers being returned.

It is possible for a number of processes to have access to a set of semaphores
while other processes are denied access to the same semaphores. These
semaphores are called protected or named semaphores and are discussed in the
introduction to this chapter.

To access a named semaphore, a call must be made to SEM$OP, which grants or
denies access to the semaphore. The process supplies a filename to the call. If the
specified file can be accessed for read access, subject to file system and ACL
protections, then the user is given access to the requested semaphores. Multiple
semaphores can be opened in a single call by supplying the number of
semaphores needed in the snbr parameter.

If access is granted to the semaphores, then the call returns an array of
semaphore numbers in the ids parameter. One number is returned for each
semaphore requested in snbr, assuming enough semaphores exist in the system

Second Edition 8-21

SEMSOP, SEMOU

Subroutines Reference Ill: Operating System

8-22 Second Edition

pool. A semaphore number of zero is returned if a semaphore could not be
assigned. In addition, code is nonzero if one or more semaphore numbers could
not be assigned. The values returned in ids should be examined to determine
which semaphores were opened (nonzero value returned), and which were not (0
value returned).

The semaphore numbers retumned should be used in all other semaphore calls as
the semaphore number parameter. SEMS$OP takes a filename and returns
semaphore numbers; SEM$OU takes a file unit; the rest of the calls accept only a
semaphore number.

If different processes call SEM$OP or SEM$OU and specify the same filename
or file unit, the same semaphore numbers will be returned to each process. This
allows processes of a subsystem to reference common semaphores.

If a call to the open routine specifies the same filename or unit number as a
previous call to open, and a larger number of semaphores is requested, then new
semaphores are acquired from the system pool to make up the difference
between the number currently open (with that filename or unit number) and the
number requested in the call. Other processes cannot use these newly assigned
semaphores unless they explicitly open them through a call to the open routine.

When the first process opens a named semaphore, the operating system sets the
value of the semaphore counter to zero or to the number specified by SEM$OU.
Subsequent opens of the semaphore do not alter the value of the counter. If a
process opens the same semaphores more than once, then the same semaphore
numbers arc returncd for cach call. No matter how many times a process opens a
semaphore, it need only close that semaphore once. This removes the burden of
counting to be sure that equal numbers of open and close calls are done.

Named semaphores can only be opened for files that reside on a local computer
system. Attempts to open named semaphores with filenames that are on remote
disks will result in failure; no semaphore numbers are assigned and code are set
to ESIREM.

If a file that was used in a call to SEMS$OP or SEM$OU is deleted or renamed
while the semaphores assigned by such a call are still open, or if the disk on
which that file resides is shut down, then the open semaphores will continue to
be accessible to the processes that already have them open. New processes will
not be given access to those semaphores, even if the disk is added again, orif a
file is crcated with the same name as the onc that was renamed or deleted.
Processes that have the semaphores open can continue to use them until they are
closed through a call to SEM$CL.

If a process logs out before all named semaphores have been closed, then those
that are still open will be automatically closed by the operating system.

J

SEMOP, SEMOU

Semaphores and Timers

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

Second Edition 8-23

SEM$TN

Subroutines Reference Ili: Operating System

SEMS$TN

Note

8-24 Second Edition

This routine causes PRIMOS to notify a specified numbered semaphore after a
specified interval of time, and periodically thereafter if so desired.

Usage

DCL SEMS$TN ENTRY (FIXED BIN, FIXED BIN(31), FIXED BIN(31),
FIXED BIN);

CALL SEMSTN (snbr, intl, int2, code);

Parameters

snbr
INPUT. A semaphore number; it must be a number in the range 0-64.

intl
INPUT. The amount of clock time (in milliseconds) that will pass before the
system notifies the semaphore the first time.

int2
INPUT. The amount of clock time (in milliseconds) that will pass before the
semaphore is notified the second time, and subsequent times. If inz2 is 0, then
the semaphore will be notified only once: after int/ milliseconds.

It is possible to indefinitely delay a notify caused by a timeout by making repeated calls
to SEMS$TN.

code
OUTPUT. Standard crror code. Possible valucs are

ES$OK Success.

E$BPAR An invalid value was supplied for snbr, intl, or int2.

ESNTIM The operating system has no more timers available.

E$BDAT Bad data supplied; the System Administrator should be
notified.

y

)

Note

SEM$TN
L] o |] . L] L] a - L] n

Semaphores and Timers

Discussion

The operating system maintains a limited number of timers for numbered
semaphores. Currently, there are a total of 15 such timers per system.

The time intervals, quoted in milliseconds, are truncated to the nearest tenth of a
second before being used.

When a call to SEMS$TN specifies a semaphore that already has an active timer
request, the values of int] and inz2 specified in the second call overwrite the
values stored in the active timer.

SEMSTN scts a timer that increments a system semaphore. Unless halted, this timer
continues to increment the semaphore after your program has completed. The semaphore
does not halt until the timer has posted 32767 notices, which may take hours or days. To
prevent this unnecessary system overhead, the last call to SEMS$TN for each semaphore
used in your program should specify O for both time arguments, int and int2. This halts
the timer. Use the LIST SEMAPHORES command to determine the current number of
notices posted to system semaphores.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.
R-mode: No special action.

Second Edition 8-25

SEMS$TS

Subroutines Reference lil: Operating System

SEMS$TS

8-26 Second Edition

This function returns the number of processes waiting on the specified
semaphore.

Usage

DCL SEMS$TS ENTRY (FIXED BIN, FIXED BIN)
RETURNS (FIXED BIN);

sval = SEMS$TS (snbr, code);

Parameters

sval

RETURNED VALUE. The current value of the specified semaphore’s counter
halfword.

snbr

INPUT. A semaphore number; it can be either a number in the allowable
range for numbered semaphores (0—64), or a number assigned to a named
semaphore by the SEM$OP or SEM$OU routine.

code
OUTPUT. Standard error code. Possible values are

E$OK Success.
E$BPAR An invalid value was supplied for snbr.
Discussion

SEMSTS tests the semaphore’s counter for the number of processes waiting on
the semaphore. This operation retumns in sval the current value of the counter,
for the semaphore numbered snbr.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

y

J

SEM$TW

3

Semaphores and Timers

SEM$TW

This routine waits the process on the specified semaphore until it is either taken
off the wait queue by a notify, or a specified amount of time has elapsed,
whichever comes first. It is used only for named semaphores.

Usage

DCL SEM$TW ENTRY (FIXED BIN, FIXED BIN, FIXED BIN);

CALL SEMS$TW (snbr, intl, code);

Parameters

snbr
INPUT. A semaphore number; it must be a number assigned to a named

semaphore by the SEMS$OP or SEM$OU routine.
intl
r INPUT. A time interval expressed in tenths of a second of clock time.

code

OUTPUT. A value that indicates why the process was allowed to continue, or
a standard error code. (Do not check for ESOK.) Possible values are

0 The process was notified by a call to SEM$NE.

1 The specified amount of time has elapsed and the process
f has not yet been notified out of the wait queue.

2 The process was aborted, for example, by a quit or forced
logout.

E$BPAR An invalid value was supplied for snbr or intl.

E$BDAT Bad data supplied; the System Administrator should be
notified.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

r Second Edition 8-27

SEM$WT

Subroutines Reference Ili: Operating System

SEM$WT

8-28 Second Edition

This routine waits the process on the specified semaphore until it is taken off
the wait queue by a notify.

Usage

DCL SEM$WT ENTRY (FIXED BIN, FIXED BIN);

CALL SEMS$WT (snbr, code);

Parameters

snbr

INPUT. A semaphore number; it can be either a number in the allowable
range for numbered semaphores (0—64), or a number assigned to a named
semaphore by the SEM$OP or SEM$OU routine.

code
OUTPUT. Standard error code. Possible values are

E$OK Success.
E$BPAR An invalid value was supplied for snbr.
ESBDAT Bad data supplied; the System Administrator should be
notified.
Discussion

The notify and wait operations are the basic functions that can be performed on a
semaphore. Notify decrements the semaphore’s counter and releases the first
process from the wait queue, if there are any processes waiting.

Wait increments the semaphore’s counter and places the process on the
semaphore’s queue if the counter becomes greater than 0. Processes are queued
first-in/first-oul within process priority; higher priority processes are queued
before those with lower priority.

The notify procedure is SEM$NF, described earlier in this chapter.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and [-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

J

r Semaphores and Timers

r r

Limit Timer Routine

This section describes the following subroutine:

Routine Function

LIMITS Set and read various timers.

r Second Edition 8-29

LIMITS

Subroutines Reference lli: Operating System

LIMIT$

This routine sets or reads various timers within PRIMOS for the current process.

Usage

DCL LIMIT$ ENTRY (FIXED BIN(15), FIXED BIN(31),
FIXED BIN(15), FIXED BIN(15));

CALL LIMITS (key, limit, res, code);

Parameters

key

INPUT. key is split into two 8-bit functions. The right half (lower byte)
specifies whether to read or set the timer limit. Specify one of the following
values:

1 Read the limit.
2 Set the limit,

The left half (upper byte) of key specifies which time limit to either read or
set. Each limit performs a different action when its value decrements to zero.
Unless otherwise specified, these timers are set by a call to LIMITS$ and
decremented by PRIMOS. Specify one of the following values:

1 CPU login limit, in seconds. PRIMOS logs the user out
when the user has consumed this number of seconds of
CPU time. LIMITS can read or modify this limit; the timer
for this limit is set to the system default and begins to
decrement when the user logs in. You cannot set the CPU
login limit larger than 1000000 (one million seconds). You
cannot set the CPU login limit to a value larger than its
current reading; once set, this value may only be
decreased. Setting the CPU login limit to zero logs the
user out immediately.

8-30 Second Edition

b

)

LIMITS

Semaphores and Timers

2 Realtime login limit, in minutes. PRIMOS logs the user
out when the number of minutes specified in limit has
elapsed. Reading the realtime login limit returns the
number of realtime minutes remaining before the user is
logged out. Setting the realtime login limit is done by
setting the /imit parameter to the number of minutes. The
realtime login limit should not be set larger than 32768
minutes; doing so may produce unpredictable results. To
cancel the realtime login limit, set limit to zero.

5 CPU watchdog limit, in seconds. PRIMOS raises the
CPU_TIMERS condition when the number of seconds
specified in limit has elapsed. Reading the CPU watchdog
limit returns the number of CPU seconds remaining before
the CPU_TIMERS condition will be raised. The CPU
watchdog limit cannot be set larger than 1000000 (one
million seconds). To cancel the CPU watchdog limit, set
limit to zero.

6 Realtime watchdog limit, in minutes. PRIMOS raises the
ALARMS condition when the number of minutes specified
in limit has elapsed. Reading the realtime watchdog limit
returns the number of realtime minutes remaining before
the ALARMS condition will be raised. Setting the realtime
watchdog limit to zero cancels the limit.

7 Realtime watchdog limit, in seconds. PRIMOS raises the
ALARMS condition when the number of seconds specified
in limit has elapsed. Reading the realtime watchdog limit
returns the number of realtime seconds remaining before
the ALARMS condition will be raised. Setting the realtime
watchdog limit to zero cancels the limit.

8 Inactivity logout limit, in minutes. PRIMOS logs the user
out when the process has remained idle for the number of
minutes specified in limit. Reading the inactivity logout
limit returns the number of minutes the process must
remain idle before the user will be logged out. The
inactivity logout limit cannot be set to zero or increased
beyond its current setting.

limit
INPUT. The time limit to be set, in minutes or seconds. This value cannot be
less than zero.

OUTPUT. The time limit to read, in minutes or seconds. Reading a value of
zero means the limit is not active.

Second Edition 8-31

LIMITS

Subroutines Reference lI: Operating System

8-32 Second Edition

res
INPUT. Reserved — must be zero.

code
OUTPUT. Standard error code. Possible values are

E$OK No error.
E$BKEY Invalid value specified in key.
E$BPAR Invalid value specified for limit, or nonzero value specified
for res.
Discussion

LIMITS sets and reads timers within PRIMOS, and performs a different action
when each type of timer expires. These actions include logging out the user and
raising standard conditions. For information about particular timers, see the
description of the key parameter above.

Once the CPU login limit has been set, the user may only call LIMITS$ to specify
a shorter CPU login limit. The user cannot use LIMIT$ to specify a longer CPU
login limit than the current setting (time remaining) or to cancel the CPU login
limit.

The realtime watchdog limit, in minutes, and the realtime watchdog limit, in
scconds, are the same limit. When read, all limits expressed in minutes are
rounded up to the next highest minute. Therefore, nonzero limits of less than one

minute are read as one minute. Fractions of a second are rounded up to the next
highest second.

For each user, the inactivity logout limit is set to the system default when the
user logs in. Thereafter, the user may only call LIMITS to specify a shorter
inactivity logout limit than the its current setting. The user cannot use LIMIT$ to
specify a longer inactivity logout limit than the current setting or to cancel the
inactivity logout limit,

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available,

4 J

Semaphores and Timers

Process Delay Routines

This section describes the following subroutines:

Routine Function
SLEEP$ Suspend a process for a specified interval.
SLEPS$I Suspend a process for a specified interval (interruptible).

)

Second Edition 8-33

SLEEP$

Subroutines Reference !i: Operating System

SLEEP$

Note

8-34 Second Edition

This routine suspends the process for a specified interval. Not interruptible.

Usage

DCL SLEEP$ ENTRY (FIXED BIN(31));

CALL SLEEPS (interval);

Parameters

interval

INPUT. A variable containing the interval, in milliseconds, for which
execution is to be suspended.

Discussion

Execution of the user process is suspended for the specified interval. An interval
Iess than 0 will have no effect. A QUIT and START from the user terminal will
cause immediate reexecution of the SLEEPS$ call.

Although the sleep interval is specified in milliseconds, SLEEPS truncates it to an
accuracy of tenths of seconds.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

SLEPS$I

SLEPSI

Semaphores and Timers

This routine suspends the process for a specified interval. Interruptible.

Usage

DCL SLEPS$I ENTRY (FIXED BIN(31));

CALL SLEPSI (interval);

Parameters

interval

INPUT/OUTPUT. Defines the delay interval in units of tenths of a second.
The user’s variable is continually updated with the amount of time remaining.

Discussion

Execution of the user process is suspended for interval tenths of a second. An
interval less than 0 will have no effect. If the wait is interrupted (for example,
by a terminal QUIT), an on-unit can read the value of the parameter to determine
the amount of time remaining to sleep. This contrasts with SLEEP$, which does
not update its parameter.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

Second Edition 8-35

D

)

3

Note

Message Facility

The PRIMOS message facility includes calls for sending and receiving interuser
messages.

These interuser messaging subroutines can also set and query a user’s
willingness to receive messages. These messages may be sent in either
immediate mode or deferred mode (to be delivered at command level only), and
may be addressed with either a user name or a user number. Reception may also
be controlled, allowing users to select one of three modes of reception: receive at
any time, receive at command level only, or never receive.

User processes can also exchange messages using the InterServer Communication facility
(ISC). ISC is described in Subroutines Reference V: Event Synchronization.

Message Facility Routines

This section describes the following subroutines:

Routine Function
MSGS$ST Return the receiving state of a user.
MGSET$ Set the receiving state for messages.

RMSGD$ Receive a deferred message.

SMSGS$ Send an interuser message.

Second Edition 9—1

MSG$ST

Subroutines Reference Ill: Operating System

MSG$ST

9-2

This routine enables the caller to dctermine whether a process is set to accept,
defer, or reject messages sent to the process via the PRIMOS message facility.

Usage

DCL MSG$ST ENTRY (FIXED BIN, FIXED BIN, CHAR(*),
FIXED BIN, CHAR(*), FIXED BIN,
FIXED BIN);

CALL MSGS$ST (key, user_num, system_name, system_name_len,
user_name, user_name_len, receive_state);

Parameters

key
INPUT. Can be either of the following;:

K$READ Return the user name and receive state for process
user_num on system system_name.

2 Return the user number and receive state for process
user_name On system system_name.

user_num

INPUT or OUTPUT. The user number of the process. If key = K$READ, the
caller must supply user_num as an input argument. If key = 2, the subroutine
returns user_num. If no process by the name user_name is logged in,
MSGS$ST returns zero to user_num.

system_name

INPUT. The name of the system on which the desired process is to be search
for.

system_name_len

INPUT. The length of system name in characters. If system_name_len =0,
the local system is assumed.

user_name

INPUT or OUTPUT. The user name of the process. If key = KSREAD, the
subroutine returns user_name. If key = 2, the caller must specify user_name
as an input parameter.

Second Edition

J

)

file:///fkey

MSGS$ST

Message Facility

user_name_len

INPUT. The length of user _name in characters. The maximum length is 32
characters.

receive_state

OUTPUT. The receive state of the process. This parameter can be any of the
following:

K$ACPT Accepting all messages.
K$DEFR Accepting deferred messages only.
K$RICT Rejecting all messages.

K$NONE User does not exist.
K$BKEY Invalid state, bad key.
K$BREM Invalid state, bad system_name.

Discussion

MSGS$ST enables the caller to determine whether a process is set to accept,
defer, or reject messages sent via the PRIMOS message facility. This setting is
referred to as the receive state of the process. In the key argument, the caller can
choose to specify a process either by its user name or user number.

e If key = KSREAD, the caller must supply the user humber of the process as
an input parameter in user_num. MSG$ST retumns the name and receive
state of this process.

e If key = 2, the caller must supply the user name of the process as an input
parameter in user_name. MSG$ST retumns the user number and receive
state of the most permissive process by that user name. If there is more
than one such process, MSG$ST returns the lowest user number among
them. Note: a process set to accept messages is more permissive than a
process sct to defer them; a process set to defer messages is more
permissive than a process set to reject them.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

Second Edition 9-3

MGSET$

Subroutines Reference Iil: Operating System

MGSET$

94

Second Edition

MGSETS$ is used to set the message receive state of the calling process. The
receive state determines the willingness of the process to accept messages sent to
it.

Usage

DCL MGSETS$ ENTRY (FIXED BIN, FIXED BIN);

CALL MGSETS (key, code);

Parameters

key
INPUT. A standard system key that specifies the receive state to be set.

K$ACPT Accept all messages.
K$DEFR Accept only deferred messages.
K$RICT Reject all messages.

code
OUTPUT. Standard error code.

E$OK No error.
E$BKEY Bad key.

Discussion

There are three possible states that a process may have: accept all messages,
accept only deferred messages, and reject all messages. Messages that are
deferred are not necessarily delivered immediately when sent, but rather are
stored in buffers by the system and delivered later. Deferring messages allows
the receiver to accept messages at convenient times rather than at times
convenient to the sender. Users may explicitly request waiting deferred
messages via the RMSGDS$ call, or they may allow the system to deliver
deferred messages automatically after PRIMOS commands complete their
execution.

J

J

3y

MGSETS$
» - » . L} L] u n] L]

Message Facility

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

Second Edition 9-5

RMSGD$

Subroutines Reference lll: Operating System

RMSGD$

9-6

Second Edition

RMSGDS$ returns waiting deferred messages to the caller. This routine does not
return immediate messages. Users wishing to obtain all messages via this
routine must inhibit immediate messages by setting their receive state to
receive only deferred messages (see MGSETS$ with a key of K$DEFR).

Usage

DCL RMSGD$ ENTRY (CHAR(*), FIXED BIN, FIXED BIN, CHAR(*),
FIXED BIN, FIXED BIN, CHAR(*),
FIXED BIN);

CALL RMSGDS$ (from_name, from_name_len, from_num, system_name,
system_name_len, time_sent, text, text_len);

Parameters

from_name
OUTPUT. The user name of the sender.

Jrom_name_len

INPUT. The maximum length of from name in characters,

Jrom_num
OUTPUT. The sender’s user number.

system_name
OUTPUT. The name of the system from which the message was sent.

system_name_len

INPUT. The maximum length of system name in characters.

time_sent

OUTPUT. The time, in minutes past midnight, at which the message was
sent. If no message is returned, time_sent is set to —1.

text
OUTPUT. The text of the message.

text_len
INPUT. The maximum length of zext.

)

RMSGD$
- o - . L] L - L] " =

Message Facility

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

Second Edition 9-7

SMSG$

Subroutines Reference Ill: Operating System

SMSG$

9-8

Second Edition

SMSG$ sends a message. Messages may either be sent immediately or deferred.

Usage

DCL SMSG$ ENTRY (FIXED BIN, CHAR(*), FIXED BIN,
FIXED BIN, CHAR(*), FIXED BIN, CHAR(*),
FIXED BIN, (258) FIXED BIN);

CALL SMSGS (key, to_name, to_name_len, to_user_num,
to_system_name, to_system_len, text, text_len,
error_vector);

Parameters
key
INPUT. Specifies the type of message, immediate or deferred.
0 Deferred message. Messages are buffered and delivered at
the receiver’s convenience.
1 Immediate message. Messages are delivered immediately
when sent.
to_name

INPUT. The user name of the user to whom the message is to be sent. If
to_name is nonblank, the message is sent to a/l users logged in under that
name. If to_name is blank, the message is sent by to_user num, and to_name

is ignored.

to_name_len
INPUT. The length of to_name in characters.

to_user_num
INPUT. The user number of the user to whom the message is sent. If
to_user_num is positive, to_name is ignored. If to_user_num is zero and
to_name is blank, the message is sent to the operator.

to_system_name
INPUT. The name of the node to which the message is to be sent. If the
target system is local (indicated by to_system_len being zero),
to_system_name is ignored.

)

Yy)

\

Note

SMSG$

Message Facility

to_system_len

INPUT. The length of to_system_name in characters. If to_system_len is
zero, the local system is assumed.

text

INPUT. The text of the message. Messages may be up to 80 characters in
length, and either blank-padded or terminated with a newline. Only printable
characters and the bell character are printed by the operating system.

text_len
INPUT. The length of text in characters.

error_vector

INPUT/OUTPUT. An array that reports the success or failure of the call. Its
size can range from 4 through 258. Its elements have the following meanings:

error_vector(1) The standard error code status returned by the
subroutine.
E$OK Operation succeeded.
E$NRCV Operation aborted because send does not have receive
enabled.
ESUADR Unknown addressee.
E$SPRTL Operation partially blocked.
E$NSUC Operation failed.
error_vector(2) Three less than the total number of elements in

error_vector. This value is provided by the
user, and is normally set to the number of
configured users. At Rev. 22.0 and subsequent
revisions, this number can be as high as 991;
for previous revisions, it can be as high as 255.

This is both an input and output parameter. On input, if error_vector(2) is set to less than
the number of users configured (KUSRY), only that many elements will be set from
error_vector(4) on. If you set error_vector(2) greater than KUSR, SMSGS will only use
the number of elements specified in KUSR. Thus, if you are not interested in the
information, this large buffer need not be rescrved. However, you must allocate an
error_vector array large enough to contain the error_vector(2) that you specified, plus 3
words.

Second Edition 9-9

SMSG$

Subroutines Reference lll: Operating System

9-10 Second Edition

error_vector(4-994) An optional status vector whose maximum
length is either the value of error_vector(2) +
3, or KUSR + 3, whichever is smaller. If you
supply this optional vector, SMSGS$ returns to
each element a status code that indicates
success or failure to send a message to user
number n — 3, where n is the index into
error_vector. For example, error_vector(10)
is the status for user number 7.

ES$SUBSY User busy, please wait.
E$UNRV User not receiving now.

Discussion

Immediate messages are delivered to the recipient at the time the message is
sent. Deferred messages are held in a system buffer until the receiver requests
them. (Deferred messages are also delivercd to a user automatically after each
PRIMOS command completes execution.) Messages may be sent to other
processes by addressing them to either their user numbers or their user names. If
user name is used, all users with that name will receive the message.

A noninteractive (phantom or batch) process does not have messages delivered
at command level. Consequently the immediate option of key is not available.
The process can receive messages using RMSGDS$.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

)

Standard Conditions

The condition mechanism is described in Chapter 7. That description tells you
how to signal conditions in general and how to handle them. It also defines the
data structures associated with conditions.

This appendix describes conditions raised by the operating system under various
circumstances. These conditions are raised by PRIMOS or its associated utility
software. Some other conditions not listed here are used by Prime software to
communicate between different subsystems or different parts of a subsystem;
normally the program is not affected by these conditions. If an ANY$ on-unit
catches a condition not included in this appendix, the condition should be
ignored by returning from the on-unit.

In the list below, the meaning of each condition is given, followed by a
description of the information available in the condition frame header structure
produced by that condition.

The standard PL/I information structure is:

DCL 1 info BASED,
2 file_ptr PTR OPTIONS (SHORT),
/* PL/I file control block */
2 info_struct_len FIXED BIN,
/* Length in halfwords
2 oncode_value FIXED BIN,
/* Unique error code */
2 ret addr PTR OPTIONS (SHORT) ;
/* Points to statement causing error.*/

The data structures used by the condition mechanism are discussed in Chapter 7
in the Data Structure Formats section. In the descriptions below, software
means that the machine state frame pointed to by ¢fh.ms_ptr is a condition frame
header, and hardware means that this frame is a fault frame header. The
notations cfh. and ffh. below refer to the condition frame header or fault frame
header that is pointed to by cfh.ms_ptr or ffh.ms_ptr. The information structures
referred to below are pointed to by cfh.info_ptr.

Unless otherwise noted below, the system default on-unit for each condition
prints an appropriate diagnostic message on the user’s terminal, terminates
program execution, and returns to PRIMOS command level.

Second Edition A-1

Subroutines Reference Ill: Operating System

)

ACCESS_VIOLATIONS

(hardware, returnable)

The process has attempted to perform a CPU instruction that has violated the
access control rules of the processor. No information is readily available to
differentiate between write violation, read violation, execute violation, and gate
violation.

Jih.fault_type
Value ’44’b3.

S fault_addr
Contains the virtual address whose access is improper.

\,
ffh.ret_pb
Points to the instruction causing the violation.
No information structure is available.
ALARMS$
(software, returnable) “N

This condition is raised when the elapsed time watchdog timer expires. See the
discussion of LIMIT$ in Chapter 8 for information on setting the elapsed time
watchdog timer.

No information structure is available.

The default on-unit simply returns. This means that the expiration of the timer is
ignored.

N
ANYS$

(pseudo-condition)

An activation’s on-unit for ANYS$ is invoked if that activation does not have a
specific on-unit for the condition that was raised. The condition frame header
for the condition ANY$ describes the original condition directly; there is no
separate condition frame header for the condition ANY$ unless ANY$ was
explicitly raised by a call to SIGNLS$ (not a recommended practice).

A-2 Second Edition

J

N

Standard Conditions

AREA

(software, not returnable)

This condition is raised when a storage area has been damaged, or when the
target area for an attempted copy from one area to another was t00 small.
Generally raised by PL/T only.

ARITH$

(hardware, returnable)

The process encountered an arithmetic exception fault.

ffh.fault_type
Value ’50°b3.

Jfh.fault_code

Hardware-defined exception code that partially identifies the cause of the
fault.

ffh.ret_pb

Points to the next instruction to be executed upon return. There is no way in
general to obtain a pointer to the faulting instruction.

No information structure is available.

The standard default handler for this condition resignals the appropriate
arithmetic condition (SIZE, FIXEDOVERFLOW, etc.) with the appropriate
information structure. This condition is raised by fixed overflow or underflow, or
zero divide.

BAD _NONLOCAL GOTO$

(software, not returnable)

The nonlocal GOTO processor was asked to transfer control to a label whose
display (stack) pointer is invalid, or whose target activation has already been
cleaned up. There is also a possibility that the user’s stack may have been
overwritten.

Information Structure:

DCL 1 info BASED,
2 target label LABEL,
2 ptr_tc_nlg call PTR,
2 caller sb PTR;

Second Edition A-3

Subroutines Reference Ili: Operating System

A—4 Second Edition

target_label
Label to which the nonlocal GOTO was attempted.

ptr_to_nlg call
Pointer to the call to PL1$NL that requested this nonlocal GOTO.

caller_sb
Pointer to the activation (stack frame) requesting this nonlocal GOTO.

BAD_PASSWORD$
(software, not returnable)

This condition is raised by the procedures that change the user’s attach point. It
is caused by attempting to attach with an incorrect password to a directory
requiring a password. This condition is signalled nonreturnable in order to
increase the work function of machine-aided password penetration.

No information structure is available.

BAD_RECORD_ADDRESS$

(software, not returnable)

An internal inconsistency has been detected when trying to read a block of a file.

No further attempt should be made to access the file, and the System
Administrator should be informed.

Information Structure:

DCL 1 info BASED,
2 pathname CHAR(128) VAR,
2 1ldev FIXED BIN,
2 ra FIXED BIN(31),
2 bra FIXED BIN(31l);

pathname

The name of the file having the problem. The string
*** ynavailable *** isrcturned if PRIMOS cannot retrieve the name.

ldev
The logical device number of the partition containing the file.

ra

The Record Address at which the error occurred. This may be reported to the
System Administrator.

Y

J

)

Standard Conditions

bra

The Branch Record Address of the file. This may be reported to the System
Administrator.

CLEANUPS

(software, returnable)

The nonlocal GOTO processor is in the process of invoking on-units for the
condition CLEANUPS in each activation on the stack, prior to actually
unwinding the stack. The on-unit for this condition should return, unless it
encounters a fatal error. Calls to CNSIG$ from a CLEANUPS$ on-unit have no
effect.

No information structure is available.

COMI_EOF$

(software, returnable)
End of file occurred on the command input file.

The default on-unit prints a diagnostic message and returns to the point of
interrupt.

CONVERSION

(software, returnable)

This condition is raised when the source data for a data-type conversion contains
one or more characters that are invalid for the target type. For example,
nonnumeric characters appear in a character string that is to be converted to
integer.

Information Structure: The standard PL/I condition information structure is
provided.

CPU_TIMERS$

(software, returnable)

This condition is raised when the CPU watchdog timer expires. See the
discussion of LIMIT$ in Chapter 8 for information on setting the CPU watchdog
timer.

No information structure is available.

The default on-unit simply returns. This means that the expiration of the timer is
ignored.

Second Edition A-5

Subroutines Reference Ill: Operating System

4

DAMAGED RAT$

(software, not returnable)

PRIMOS has detected an inconsistency in the Record Availability Table of a disk
partition. The System Administrator should be informed.

Information Structure:

DCL 1 info,
2 1ldev FIXED BIN;

ldey
Logical device number of the partition on which the error occurred. »\

DISK_READ_ERR$

(software, not returnable)

A nonrecoverable error has occurred when trying to read a file. No further
attempt should be made to access the file, and the System Administrator should
be informed.

Information Structure:

DCL 1 info BASED,
2 pathname CHAR (128) VAR,
2 1ldev FIXED BIN,
2 ra FIXED BIN(31),
2 Dbra FIXED BIN(31):;

pathname

The name of the file having the problem. The string
*** unavailable *** jsreturned if PRIMOS cannot retrieve the name.

ldev
The logical device number of the partition containing the file.

ra
The Record Address at which the crror occurred. This may be reported to the
System Administrator.

bra
The Branch Record Address of the file. This may be reported to the System
Administrator. “~

A-6 Second Edition »-\

)

Standard Conditions

ENDFILE (file)

(software, returnable)

This condition is raised when an end of file is encountered while reading a PL/I
file with PL/I I/O statements. The value of the ONFILE() built-in function
identifies the file involved.

Information Structure: The standard PL/I condition information structure is
provided. The value of info.oncode value is undefined, and info file_ptr
identifies the file on which end of file occurred.

The default on-unit for this condition prints a diagnostic and then resignals the
ERROR condition with an info.oncode_value of 1044.

ENDPAGE (file)

(software, returnable)

This condition is raised when end of page is encountered while writing a PL/I
file using PL/I I/O statements. The value of the ONFILE() built-in function
identifies the file on which the end of page was encountered.

Information Structure: The standard PL/I condition information structure is
provided. The value of info.oncode_value is undefined; info file_ptr identifies
the file in question.

The default on-unit for this condition performs a PUT SKIP on the file, and then
retums.

ERROR

(software, varies)

This condition is a catch-all error condition defined in PL/I. The default on-unit
for most PL/I-defined conditions (such as KEY) results in the ERROR condition
being resignalled. Hence, the programmer has the choice of handling a
more-specific or less-specific case of the condition.

ERRRTN$

(software, not returnable)

A non-ring-0 call to the ring-0 entry ERRRTN was made, as the result of an
ERRRTN SVC or a call to ER$PRINT with certain values of the key.

No information structure is available.

The default on-unit for this condition simulates a call to EXIT; hence, this
condition should be signalled only while executing in a static-mode program.

Second Edition A-7

Subroutines Reference Ill: Operating System

A-8 Second Edition

J

EXIT$

(software, returnable)

The process has made a call to the EXIT primitive, via a direct call or an EXIT
SVC. This condition should not be handled by user programs, since it is used by
certain PRIMOS software to monitor the execution of static-mode programs.

No information structure is available.

The default on-unit for this condition simply retumns.

FINISH

(software, returnable)

This condition is signalled before process termination, usually after files are
closed. It closes any open files and retumns to the point at which the condition
was signalled. This condition is not signalled if the process is prematurely
exhausted or destroyed. Available through PL/I. In PL/I, a STOP statement
causes FINISH to be raised after files are closed. In this case, FINISH also
raises the STOP$ condition.

The default on-unit simply returns.

FIXEDOVERFLOW

(hardware, not retumable)

This condition is detected by hardware and is raised when a fixed-point decimal
or binary result is too large to fit into the hardware register or decimal field.

Information Structure: The standard PL/I condition information structure is

provided.
)

HEAP_ERRORS$

(software, non-returnable)

This condition is raised by user-class storage allocation and free routines to
indicate that the memory structures defining the user’s free memory area have
become corrupted. See the discussion of STR$SAU and STR$FU in Chapter 4,
Mcmory Allocation.

No information structure is available.

The default on-unit prints a message informing the user about the corrupted
storage area.

)

Standard Conditions

ILLEGAL_INST$

(hardware, returnable)

The process attempted to execute an illegal instruction.

ffh.fault_type
Value ’40’b3.

Sffh.ret_pb
Points at the faulting instruction.

No information structure is available.

ILLEGAL_ONUNIT_RETURN$

(software, not returnable)

An on-unit for a condition attempted to return, but returning was disallowed by
the procedure that raised the condition.

Information Structure: A condition frame header (CFH) in the standard
format describing the condition whose on-unit illegally attempted to return.

ILLEGAL_SEGNOS$

(hardware, returnable)

The process referenced a virtual address whose segment number is out of
bounds.

ffh.fault_type
Value *60°b3.

ffh.ret_pb
Points to the faulting instruction.

ffh.fault_addr
The virtual address that is in error.

No information structure is available.

Second Edition A-9

Subroutines Reference IIl: Operating System

A-10 Second Edition

INVALID REC_ADR$

(software, not returnable)

PRIMOS attempted to free a disk record whose address is invalid. This indicates
an inconsistency on the disk partition. The System Administrator should be
informed.

Information Structure:

DCL 1 info,
2 ldev FIXED BIN;

ldev
Logical device number of the partition on which the error occurred.

KEY (file)

(software, returnable)

The KEY condition is raised when reading or writing a keyed PL/I file with PL/I
I/O statements, and the supplied key does not exist (READ) or already exists
(WRITE).The value of the ONFILE() built-in function identifies the file in
question; the value of the ONKEY() built-in function contains the key in error.

Information Structure: The standard PL/I condition information structure.
The value of info.oncode_value is undefined; the value of info.file_ptr identifies
the file in question.

The default on-unit prints a diagnostic and resignals the ERROR condition, with
an info.oncode value of 1045.

LIBRARY_IO_ERRS$

(software)

This condition indicates that the FORTRAN 1/O library has encountered an
unexpected error. The condition may be returnable or not, depending on the
circumstances. Examine the Condition Frame Header (the field is
cflags.return_ok) to find out if you can return from the condition.

The default on-unit prints a diagnostic message on the terminal and signals the
STOPS$ condition.

J

b

Standard Conditions

Information Structure:

DCL 1 info BASED,
2 error code FIXED BIN,
2 logical_unit FIXED BIN,
2 routine name CHAR(32) VAR,
2 error message CHAR(80) VAR;

error_code
Standard error code defining the error encountered.

logical_unit
Number of the FORTRAN logical unit on which the error was encountered.

routine_name
Name of the routine that encountered the error.

error_message
Additional information about the error.

LINKAGE_ERRORS$

(hardware, returnable)

The process made a reference through an indirect pointer (IP) that is a valid
unsnapped dynamic link. Either an error occurred while attempting to resolve
the fault, or an attempt was made to create an invalid dynamic link type.
Process-class library EPFs are prevented from linking to either program-class
library EPFs or static-mode shared libraries.

ffh.fault_type
Value '64’b3.

Jfh.fault_addr
Points to the faulting indirect pointer.

ffh.ret_pb
Points to the faulting instruction.

Second Edition A-11

Subroutines Reference Ili: Operating System

A-12 Second Edition

Information Structure:

DCL 1 info,
2 entry name_ptr POINTER OPTIONS (SHORT),
2 errcode FIXED BIN;

entry_name_ptr
Pointer to the name of the entry point that could not be found.

errcode
Standard error code.

LINKAGE_FAULTS$

(hardware, returnable)

The process referenced through an indirect pointer (IP) that is a valid unsnapped

dynamic link, but the desired entrypoint could not be found in any of the
dynamic link tables.

ffh fault_type
Value ’'64°b3.

ffh.fault_addr
Points to the faulting indirect pointer.

ffh.ret_pb
Points to the faulting instruction.

Information Structure:

DCL 1 info BASED,
2 entry name CHAR(32) VAR;

entry_name
Name of the entry point that could not be found.

LISTENER_ORDER$

(software, varies)

This condition is used internally by the command loop to manage its recursion.

Users should never make on-units for this condition, and user default on-units
(ANYS$) should always pass this condition on by returning.

J

b

Standard Conditions

LOGOUTS$

(software, returnable)

This condition is raised when a user or the operator is trying to force-log out a
process.

Information Structure:

DCL 1 logout info,
2 reason FIXED BIN;
/* reason for logout; codes available in PRIMOS source */

The default on-unit logs out the process. When LOGOUTS is signalled, the
intercepting process has between one and two minutes to do its cleanup before
being force-logged out.

NAME

(software, returnable)

This condition occurs only during data-directed input. It occurs when reading a
stream assignment in a GET statement whose variable does not match the
variable name in the data list. After execution of the on-unit, the process returns
to the data-directed input as if the invalid input were processed. Generally raised
by PL/I only.

NAMELIST LIB_ERR$

(software, returnable)

This condition is used by the subroutines in the F77 NAMELIST library to
report to the user additional information concerning an error.The information is
stored in a user buffer whose structure is given below.

Information Structure:

DCL 1 namelist err info BASED,

2 code FIXED BIN,
routine name CHAR(32) VAR,
namelist name CHAR(6) VAR,
input_line_ptr PTR OPTIONS (SHORT),
line_err ptr FIXED BIN,
input line length FIXED BIN;

NN NN

Second Edition A-13

Subroutines Reference lI: Operating System

A-14 Second Edition

code
Standard error code defining the error encountered.

routine_name
Name of the NAMELIST library subroutine that encountered the error.

namelist_name
Name given to the buffer in the F77 read or write.

input_line_ptr
Pointer to the buffer.

line_err_ptr
Offset into the buffer of the information about the error.

input_line_length
Length of the buffer.

NO_AVAIL_SEGS$

(hardware, retumable)

The process referenced a virtual address that refers to a segment that has not yet
been created. At the moment, the system has no free page tables to assign to the
segment. If the on-unit for this condition returns, the reference is retried. If, in
the meantime, this or some other process deleted a segment, the reference now
has the possibility for successful completion.

ffh.fault_type
Value '60’b3.

ffh.ret_pb
Points to the faulting instruction.

Jfh. fault_addr
Virtual address that is causing the attempted segment creation.

No information structure is available.

J

)

Standard Conditions

NONLOCAL_GOTO$

(software, returnable)

This condition is signalled by the PL/I nonlocal GOTO processor PL1$NL just
prior to setting up the stack unwind (and hence prior to the invocation of any
CLEANUPS on-units). This condition exists to enable certain overseer software
(such as the debugger) to be informed that the nonlocal GOTO is occurring. The
default handler for this condition simply returns. When a procedure handling
this condition wishes to let the nonlocal GOTO occur, it should simply return
(without continue-to-signal set).

Information Structure: Same as for the BAD_NONLOCAL_GOTO$
condition.

NPX_SLAVE_SIGNALED$

(software, not returnable)

A condition was raised in your slave process running on some remote system.
The following message is printed:

Condition signalled in NPX slave on nodename
ERROR: Condition “condition name” raised at segment no./
halfword no.

Information Structure:

DCL 1 npx_slave_info,
2 node FIXED BIN,
/* npx node number on which slave is running */
2 orig_condition CHAR(32) VAR,
/* condition raised in slave */
2 orig info data (129) FIXED BIN;
/* info structure from slave */

When the slave detects a signalled condition, it transmits to the master, which
signals the condition NPX_SLAVE_SIGNALEDS. Its result is the printout of the
message shown above. The slave transmits to the master all types of conditions
signalled except the following:

EXITS$

FINISH
LINKAGE_FAULTS$
NONLOCAL_GOTO$
REENTERS$
STRINGSIZE

Second Edition A-15

Subroutines Reference Ill: Operating System

A-16 Second Edition

These conditions are handled differently by the slave’s on-unit. They are
returned without transmitting to the master; that is, the master side will not get
the condition NPX_SLAVE_SIGNALEDS.

NULL POINTERS$

(hardware, returnable)

The process referenced through an indirect pointer or base register whose
segment number is '7777°b3. This is considered to be a reference through a null
pointer, although user software should always employ the single value '7777/0
for the null pointer.

Jfh fault_type
Value *60°b3.

Jffh.ret_pb
Points to the faulting instruction.

Jffh.fault_addr
Null pointer through which a reference was made.

No information structure is available.

The default on-unit for this condition resignals the ERROR condition with the
appropriate information structure.

OUT_OF_BOUNDSS$

(hardware, returnable)

The process referenced a page of some segment that cannot be referenced in any
ring (that is, no main memory or backing storage is allocated for that page, and
allocation is not permitted).

ffhfault_type
Value '10°b3.

ffh.ret_pb
Points at the faulting instruction.

Jfh.fault_addr
The offending virtual address.

No information structure is available.

J

Standard Conditions

OVERFLOW

(hardware, not returnable)

This condition is raised when the result of a floating-point binary calculation is
too large for representation. It may occur within a register or as a store
exception. The default on-unit prints a message and signals the ERROR
condition. User on-units may not return to the point of interrupt. However, if
the default on-unit is invoked, and if the user types START, the register or
memory location affected is set to the largest possible single-precision
floating-point number, and calculation continues.

PAGE_FAULT_ERR$

(hardware, returnable)

The process encountered a page fault referencing a valid virtual address, but, due
to a disk error, the page control mechanism was not able to load the page into
main memory. If the on-unit for this condition returns, the reference is retried,
with some likelihood that the disk read will succeed.

Jfh.fault_type
Value '10°b3.

ffh.ret_pb
Points at the faulting instruction.

Jfhfault_addr
Virtual address, the page for which cannot be retrieved.

No information structure is available.

PAGING_DEVICE_FULL$

(hardware, returnable)

The process encountered a page fault referencing a valid virtual address, but the
page had not previously been assigned room on the paging disk, and no more
room was available. If the on-unit for this condition returns, the reference is
retried, with some likelihood that a page has been made available by another
process.

ffh.fault_type
Value *10°b3.

ffh.ret_pb
Points at the faulting instruction.

Second Edition A-17

Subroutines Reference 1ll: Operating System

A-18 Second Edition

Jfh.fault_adadr
Virtual address, the page for which cannot be allocated.

No information structure is available.

PAUSES$

(software, returnable)

The process executed a PAUSE statement in a FORTRAN program. This
condition should not be handled by user programs since it is used by Prime
software to ensure the proper operation of the FORTRAN PAUSE statement.

No information structure is available.

The default on-unit for this condition prints no diagnostic, but calls a new
command level.

PH_LOGOS$

(software, returnable)
This condition is raised when a phantom that you spawned is logging out.

No information structure is directly available. Use the subroutine LONS$R,
described in Chapter 5, to obtain information about the phantom.

POINTER_FAULT$

(hardware, returnable)

This is the process referenced through an indirect pointer (IP) whose fault bit is
on, but that pointer is not a valid unsnapped dynamic link. This error condition
is frequently caused by making a subroutine call with too few arguments. The
condition is raised when the called subroutine attempts to access one of its
arguments through a faulted pointer.

Jfh.fault_type
Value '64°b3.

ffh fault_adar
Points to the faulting indirect pointer.

ffh.ret_pb
Points to the faulting instruction.

No information structure is available.

J)

J

Standard Conditions

QUITS

(hardware, software, returnable)
The user actuated QUIT (BREAK key or CONTROL~P) on the terminal.
If this is a hardware signal, then ffh.fault_type has the value *04°b3.

cfh.ret_pb or ffh.ret_pb points to the next instruction to be executed in the
faulting procedure.

No information structure is available.

The default on-unit flushes the input and output buffers of the user’s terminal,
prints the message QUIT. on the terminal, and calls a new command level.

RECORD

(software, returnable)

This condition is raised when record size is different from the variable defined in
the PL/I source. Generally raised by PL/I only.

REENTERS$

This condition is raised by the PRIMOS REENTER (REN) command and
rcenters a subsystem that has been temporarily suspended due to another
condition (such as a QUITS signal).

If the interrupted operation can be aborted, the subsystem’s on-unit can
accomplish this by performing a nonlocal GOTO back into the subsystem at the
appropriate point.

If the QUITS$ occurred during an operation that must be completed, the on-unit
should set the info.start_swto '1°b, record the QUITS$ request within the
subsystem, and return. The REN command then executes a START command
which restarts the subsystem at the point of interrupt. When the operation is
complete, the subsystem should then honor the recorded QUIT$ request.

The default on-unit returns without setting the info.start_sw. The REN
command then prints a diagnostic and retumns since it assumes the stack held no
subsystcm able to accept reentry.

Information Structure:

DCL 1 info BASED,
2 start sw BIT(l) ALIGNED;

Second Edition A-139

file:///imiffh.fault_type

Subroutines Reference Ill: Operating System

RESTRICTED_INST$

(hardware, returnable)

The process attempted to execute an instruction whose use is restricted to ring-0
procedures. Certain of these instructions (in the I/O class) can be simulated by
ring 0. An instruction that causes this condition to be raised could not be
simulated by this mechanism.

Jfh.fault_type
Value '00°b3.

Jfh.ret-pb

Points to the faulting instruction.

RTNREC_ERR$

(software, not returnable)

PRIMOS has attempted to free a disk record that is already marked as free. This
indicates an inconsistency on the disk partition. The System Administrator
should be informed.

Information Structure:

DCL 1 info,
2 1ldev FIXED BIN;

ldev
Logical device number of the partition on which the error occurred.

RO_ERRS$

(software, returnable)

A ring-0 call to ER$PRINT or ERRRTN was made, as the result of a detected
fatal error condition.

No information structure is available.

The default on-unit for this condition prints no diagnostic, but calls a new
command level.

A-20 Second Edition

J

\

Standard Conditions

SETRC$

(software, returnable)

This condition is raised when a program that called subroutine SETRC$ exits.
See the discussion in Chapter 5 for information about the SETRCS$ subroutine.

No information structure is available.

The default on-unit simply returns.

SIZE

(software, not returnable)

This condition is raised when a program tries to do an arithmetic conversion and
the value is too large to fit into the target data type. It can occur when
converting a floating-point number, a decimal integer, or a character string.

Information Structure: The standard PL/I condition information structure is
provided.

STACK_OVFS$

(hardware, returnable)

The process overflowed one of its stack segments, but the condition mechanism
was able to locate a stack on which to raise this condition.

ffh.fault_type
Value ’54°b3.

ffh.fault_addr

The last stack segment in the chain of stack segments of the stack that
overflowed. It is this segment that contains the zero extension pointer that
caused the stack overflow fault.

ffh.ret_pb
Points to the faulting instruction.

No information structure is available.

Second Edition A-21

Subroutines Reference lll: Operating System

A-22 Second Edition

STOP$

(software, not returnable)

The process executed a STOP statement in a higher-level-language program.
This condition should not be handled by user programs, as it is used by Prime
software to ensure the proper operation of the STOP statement in the various
languages.

No information structure is available.

The default on-unit for this condition performs a nonlocal GOTO back to the
command processor that invoked the procedure (or one of the dynamic
descendants) that executed the STOP statement.

STORAGE

(software, returnable)

The STORAGE condition indicates there is insufficient memory to satisfy a
request to allocate dynamic memory. In PL/I, the condition can be raised either
through the ALLOCATE statement or by the compiler making its own call.

Information Structure: The standard PL/I condition information structure is
provided.

STRINGRANGE

(software, returnable)

One argument of the PL/I SUBSTR function is out of range of the string.

STRINGSIZE

(software, rcturnable)

The target of a string assignment is too small to contain the value. The default
on-unit simply returns.

Information Structure: The standard PL/I condition information structure is
provided.

J

)

Standard Conditions

SUBSCRIPTRANGE

(software, returnable)
A subscript is out of range.

Information Structure: The standard PL/I condition information structure is
provided.

SUBSYS_ERR$

The subroutine SS$ERR raises this condition when it is called by a subsystem
that is not interactive (that is, one run by a CPL or command file). The default
on-unit for SUBSYS_ERRS$ aborts execution of the subsystem and forces the
severity code to have a positive sign. Any command input file is aborted.

SVC_INST$

(hardware, returnabie)

The process executed an SVC instruction, but the system was not able to perform
the operation. If the user is in “SVC virtual” mode, all SVC instructions result
in this condition being raised.

Jfh.fault_type
Value ’14’b3.

Jfh.ret_pb
Points to the location following the SVC instruction.

Information Structure:

DCL 1 info BASED,
2 reason FIXED BIN;

reason
Values are
1 Bad SVC operation code or bad argument(s).
2 Alternate return needed but was 0.
3 Virtual SVC handling is in effect in this process.

Second Edition A-23

Subroutines Reference Iil: Operating System

A-24 Second Edition

For the case of virtual SVCs only (info.reason code of 3), the static-mode default
on-unit simulates the Prime 300 fault handling for the SVC fault, if the
appropriate halfword of segment *4000 is nonzero. If this halfword is O or if
there is no static-mode program in execution, the standard default handler prints
a diagnostic and calls a new command level. (See the System Architecture
Reference Guide for the exact location.)

SYSTEM_STORAGES$

This condition is raised when one of the routines managing process-class
dynamic memory detects an error. These routines are described in Chapter 4.

The default on-unit initializes the command environment.

TRANSMIT

(software, returnable)

This condition occurs when data cannot be transmitted reliably between a data
set and PL/I storage.

ung

(hardware, rcturnable)

The process executed an unrecognized instruction that nevertheless caused an
unimplemented instruction fault, or else the system UII handler detected an error
in processing the valid UIL

The fault frame header that accompanies this condition is nonstandard in that
ffh.regs is not valid. The registers at time of fault are unavailable.

ffh.ret_pb
Points to the next instruction to be executed in the faulting procedure.

UNDEFINEDFILE (file)

(software, not rcturnable)

This condition is raised when an OPEN statement cannot associate an input
file with an existing PRIMOS file or device. The default on-unit prints a
message and signals the ERROR condition.

J

J

)

Standard Conditions

UNDEFINED _GATES$

(software, not returnable)

This condition is signalled when the process called an inner-ring gate segment at
an address within the initialized portion of the gate segment, but there was no
legal gate at that address. This error can arise because gate segments are padded
with illegal gate entries, from the last valid gate entry to the next page boundary,
and the program attempted to construct and use a pointer into the gate segment,
instead of using the dynamic linking mechanism.

No information structure is available.

UNDERFLOW

(hardware, returnable)

This condition is signalled when the result of the floating-point binary or
decimal calculation is too small for representation. The default on-unit sets
the floating-point accumulator to 0.0e0. If the underflow occurred as a store
exception, the affected portion of memory is also set to 0.0e0. The default
on-unit returns and the calculation proceeds, using the 0.0e0 value.

Information Structure: The standard PL/I condition information structure is
provided.

WARMSTART$

(software, returnable)
This condition is raised for every process when the operator successfully
performs a warm start. The default on-unit prints the following message and
returns

*kk*kk* WARM START ***x*x%

No information structure is available.

Second Edition A-25

Subroutines Reference Ili: Operating System

A-26 Second Edition

ZERODIVIDE

(hardware, not returnable)

This condition is raised when an attempt is made to divide a floating-point or
fixcd-point number by zero. (Note that the ZERODIVIDE condition is not raised
when an attempt is made to divide an integer by zero.) The default on-unit prints
a message and signals the ERROR condition. For compatibility with earlier
versions of PRIMOS, if the condition is the result of a floating-point operation,
the user may type START following the printing of the message. The default
on-unit then sets the register involved to the largest possible single-precision
floating-point value and proceeds with the calculation.

By default, a bit in the ECB keys register is set to OFF to disable the
ZERODIVIDE condition. The condition can be enabled by writing a PMA
program to set the bit ON.

Information Structure: The standard PL/I condition information structure is
provided.

4)

J

Note

Data Type Equivalents

To call a subroutine from a program written in any Prime language, you must
declare the subroutine and its parameters in the calling program. Therefore, you
must translate the PL/I data types expected by the subroutine into the equivalent
data types in the language of the calling program.

Table B-1 shows the equivalent data types for the Prime languages BASIC/VM,
C, COBOL 74, FORTRAN 1V, FORTRAN 77, Pascal, and PL/I. The leftmost
column lists the generic storage unit, which is measured in bits, bytes, or
halfwords for each data type. Each storage unit matches the data types listed to
the right on the same row. The table does not include an equivalent data type for
each generic unit in all languages. However, with knowledge of the
corresponding machine representation, you can often determine a suitable
workaround. For instance, to see if you can use a left-aligned bit in COBOL 74,
you could write a program to test the sign of the 16-bit field declared as COMP.
In addition, if a subroutine parameter consists of a structure with elements
declared as BIT(n), it can be declared as an integer in the calling program. Read
the appropriate language chapter in the Subroutines Reference I: Using
Subroutines before using any of the equivalents shown in the table.

The term PL/I refers both to full PL/I and to PL/I Subset G (PL/I-G).

Second Edition B-1

c—8

uop3 puoes

J

Table B-1. Equivalent Data Types for Prime Languages

Generic BASIC/VM COBOL FORTRAN FORTRAN
Unit SUB FORTRAN 74 v 77 Pascal PULI
COMP INTEGER FIXED BIN
16-bit integer INT short PIC S9(1)- INTEGER*2 INTEGER*2 INTEGER FIXED
enum PIC S9(4) | LOGICAL LOGICAL*2 Enumerated BIN(15)
COMP INTEGER
32-bit integer INT*4 int PIC S9(5)- INTEGER*4 INTEGER*4 LONGINTEGER | FIXED
long PIC S9(9) LOGICAL BIN(31)
LOGICAL*4
COMP
64-bit integer PIC S9(10)-
PIC S9(18)

FLOAT BIN
32-bit float REAL float COMP-1 REAL REAL REAL FLOAT
single precision REAL"4 REAL*4 BIN(23)
64-bit float REAL'8 double COMP-2 REAL'8 REAL*8 LONGREAL FLOAT
double precision BIN(47)
128-bit float REAL*16
quad precision
1 bit short BIT

BIT(1)

1 left-aligned bit short BOOLEAN BIT(1)
ALIGNED
TOF01.D10082 2LA

J

WwoalsAs buiesadp I 8oUB18J0Y SBUNNOIGNS

uoyIp3 puoddS

e4

3

3

Table B-1. Equivalent Data Types for Prime Languages (Continued)

)

Generic BASIC/VM COBOL FORTRAN FORTRAN
Unit SUB FORTRAN c 74 v 77 Pascal PUI
Bit string unsigned SET BIT(n)
int
DISPLAY CHAR
Fixed-length INT char NAME[n] PIC A(n) CHARACTER | PACKED CHAR(n)
character string char NAME PIC X(n) ‘n ARRAY[1..n}
FILLER OF CHAR
Fixed-length DISPLAY PICTURE
digit string PIC 9(n)
Fixed-length
digit string, COMP-3 FIXED
2 digits per byte DECIMAL
struct
Varying-length {short LENGTH; STRING|[n] CHAR(n)
character string char DATA[n]; VARYING
} CVAR
POINTER
32-bit pointer Pointer LOC() LOC() OPTIONS
(32IX-mode) (SHORT)
48-bit pointer Pointer Pointer POINTER
(64V-mode)
TOF01.D10082.2LA
Notes

For a discussion of possible workarounds for some of the empty boxes in this table as well as a description of

generic units for PMA, refer to the appropriate language chapter in the Subroutines Reference I: Using Subroutines.
The BASIC/VM column lists FTN data types to be declared in the SUB FORTRAN statement in a BASIC/VM

program,

3

Sjusieainbg odA| ejeq

)

File-system Date Format

Some of the routines in this volume refer to file-system date format (or
FS-date). This is a 32-bit value that is used by the PRIMOS filing system to
record date and time information.

A date and time in file-system date format occupies 32 bits, so it may be held in
a fullword integer (FORTRAN INTEGER*4). The format is designed so that
times can be compared arithmetically with correct results. For example, if datel
and date2 are two 32-bit integers, and datel is less than date2, then the time
represented by datel is earlier than the time represented by date2. (Integer
comparison of two dates does not work if they fall on opposite sides of 1 Jan
1964, because the high order bit of year is the arithmetic sign of the integer. It
becomes a 1 on that date, changing the sign of the integer.)

The time is accurate to the nearest four seconds. The word quadsecond has
been invented to stand for a unit of time of four seconds. This unit was chosen
so that the time field will is positive. The routines CVDQS, CVDTB,
CVSFDA, CVSFDV, and CV$QSD, described in Chapter 6, are provided to
convert between file-system date format and other, more convenient formats.

The date is encoded as three integers packed into the first 16 bits, as described in
the following structure:

DCL 1 fs_date,
2 year BIT(7),
2 month BIT(4),
2 day BIT(5),
2 quadseconds FIXED BIN(15);

year Year number, minus 1900. For example, 86 represents the
year 1986, and 117 represents the year 2017.

month Month, from 1 for January to 12 for December.

day Day of the month, from 1 to 31.

quadseconds Number of quadseconds (groups of four seconds) elapsed
since midnight of the date described by the above three
fields.

Second Edition Cc-1

Superseded Routines

This appendix lists routines considered obsolete or superseded, which Prime
continues to support. It describes the following subroutines:

Routine Function

r DISPLY Update sense light settings.
ERRPR$ Print a standard error message.
ERRSET Set ERRVEC (a system error vector).
ERTXTS$ Return text representation of error code.

GETERR Retumn ERRVEC contents.
OVERFL Check if an overflow condition has occurred.

r PHANTS$

Start a phantom process.

PRERR Print an error message.
RECYCL Cycle to the next user.
SLITE Set the sense light on or off.
SLITET Test sense light settings.

r SSWTCH Test sense switch settings.
TEXTO$ Check filename for valid format.

UPDATE Update current directory (PRIMOS II only).

f‘ Second Edition

DISPLY

Subroutines Reference lil: Operating System

J

DISPLY

DISPLY updates the sense light settings according to argument Al. The bit
values of A1l (1 = on, 0 = off) correspond to switch/light settings that are
displayed on the computer control panel.

Usage

CALL DISPLY (A1)

Discussion

DISPLY is of use only on Prime computers that have lights on the control panel.
Newer Prime computer models have no lights.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB. -~

R-mode: No special action.

D-2 Second Edition ‘\

ERRPR$

ERRPR$

Superseded Routines

ERRPRS interprets a return code and, if the code is non zero, prints a standard
message associated with the code, followed by optional user text. See
Subroutines Reference I: Using Subroutines for more details on error handling.

Usage

DCL ERRPR$ ENTRY (FIXED BIN, FIXED BIN, CHAR(*),
FIXED BIN, CHAR(*), FIXED BIN);

CALL ERRPRS (key, code, text, textlen, filnam, namlen);

Parameters
key
INPUT. The action to take after printing the message. Possible values are
K$NRTN Exit to the system; the system cannot return to the calling
program.
K$SRTN Exit to the system; return to the calling program following
a START command.
K$IRTN Return immediately to the calling program.
code

INPUT. A variable containing the return code from the routine that generated
the error. If code is O, ERRPR$ always returns immediately to the calling
program and prints nothing.

rext

INPUT. A message to be printed following the standard error message. Text
is omitted by specifying textlen as 0.

textlen
INPUT. The length (in characters) of text.

filnam

INPUT. The name of the program or subsystem detecting or reporting the
error. filnam is omitted by specifying namlen as 0.

namlen
INPUT. The length (in characters) of filnam.

Second Edition D-3

ERRPR$

Subroutines Reference lil: Operating System

D—-4 Second Edition

Discussion

If ERRPRS is called from an EPF (Executable Program Format) program, using
one of the key values K$NRTN, or K$SRTN signals a condition. A key of
K$NRTN causes the condition STOPS to be signalled, with return prohibited. By
default, the STOP$ condition returns control to the current command level. A
key of K$SRTN causes the condition RO_ERRS to be signalled, with return
permitted. By default, the RO_ERRS$ condition generates a new command level.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.
R-mode: No special action.

J

J

ERRSET

ERRSET

Superseded Routines

ERRSET sets ERRVEC, a system vector, then takes an alternate return or prints
the message stored in ERRVEC and returns control to the system.

Usage

CALL ERRSET (altval, altrtn)
CALL ERRSET (altval, altrtn, messag, num)

CALL ERRSET (altval, altrtn, name, messag, num)

Parameters

In Form 1, altval must have value 100000 octal and altren specifies where
control is to pass. If altrtn is zero, the message stored in ERRVEC is printed and
control retumns to the system. Forms 2 and 3 are similar; therefore, the
arguments are described collectively as follows:

altval

A two-halfword array that contains an error code that replaces ERRVEC(1)
and ERRVEC(2). altval(1) must not be equal to 100000 octal.

altrin

A FORTRAN label preceded by a dollar sign. If altrtn is nonzero, control
goes to altren. If altrtn is zero, the message stored in ERRVEC is printed and
control returns to PRIMOS.

name

The name of a three-halfword array containing a six-letter word. This name
replaces ERRVEC(3), ERRVEC(4), and ERRVEC(S). If name is not an
argument in the call, ERRVEC(3) is set to zero.

messag

An array of characters stored two per halfword. A pointer to this messag is
placed in ERRVEC(7).

num
The number of characters in messag. The value of num replaces ERRVEC(8).

Second Edition D-5

ERRSET

Subroutines Reference lll: Operating System

D-6 Second Edition

Discussion

Refer to the description of PRERR, later in this chapter, for the contents of
ERRVEC.

If a message is to be printed, first, six characters starting at ERRVEC(3) are
printed at the terminal. Then the operating system checks to determine the
number of characters to be printed. This information is contained in
ERRVEC(8). The message to be printed is pointed to by ERRVEC(7). The
operating system only prints the number of characters from the message (pointed
to by ERRVEC(7)) that are indicated in ERRVEC(8). If ERRVEC(3) is zero,
only the message pointed to by ERRVEC(7) is printed. The message stored in
ERRVEC may also be printed by the PRERR command or the PRERR
subroutine. The contents of ERRVEC may be obtained by calling subroutine
GETERR.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

)

~

ERTXTS$

ERTXT$

Superseded Routines

This routine accepts a standard PRIMOS error code and returns the character
string representation of its error message as it would be printed by the routine
ERRPRS.

Usage

DCL ERTXTS$ ENTRY (FIXED BIN, CHAR(1024)VAR);

CALL ERTXTS (code, errmsg);

Parameters

code
INPUT. Standard error code.

errmsg
OUTPUT. Text of error message.

Discussion

If code is not a valid error code, the null string is returned.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and [-mode with unshared libraries: Load NPFTNLB.

R-mode: Not available.

Second Edition D-7

GETERR

Subroutines Reference lll: Operating System

GETERR

This routine returns the contents of ERRVEC.,

Usage

CALL GETERR (xervec, n)

Discussion

GETERR moves n halfwords from ERRVEC into xervec.

On an Alternate Return

ERRVEC(1) Error code.
ERRVEC(2) Altemate value.

On a Normal Return

PRWFIL:
ERRVEC(3) Record number.
ERRVEC(4) Word number.

SEARCH:
ERRVEC(2) File type.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries:

R-mode: No special action.

D-8 Second Edition

Load NPFTNLB.

OVERFL

r Superseded Routines

r OVERFL

This routine checks if an overflow condition has occurred.

Usage

CALL OVERFL (A1)

Discussion

Argument A1l in location ACS is given a value of 1 if entry into FSER was made;
’- otherwise it is set to 2. F$ER is left in the no error condition.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

Second Edition D-9

)

PHANTS

Subroutines Reference Ill: Operating System

PHANTS$

D-10 Second Edition

PHANTS starts a phantom user. This subroutine may be used only for non-CPL
phantoms. It has been replaced with PHNTMS.

Usage

CALL PHANTS (filnam, namlen, funit, user, code)

Parameters

filnam
Name of command input file to be run by the phantom (integer array).

namlen
Length of characters of filnam (16-bit integer).

Sunit
File unit on which to open filnam. If funit is O, unit 6 will be used (16-bit
integer).

user
A variable retumned as the user number of the phantom (16-bit integer).

code

The return code (16-bit integer). If it is ESOK, the phantom was initiated
successfully. If code is ESNPHA, no phantoms were available. Other values
of code are file system error indications.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: I.oad NPFTNLB.

R-mode: No special action.

N

PRERR

PRERR

Superseded Routines

PRERR prints an error message on the user’s terminal.

Usage

CALL PRERR

Example

A user wants to retain control on a request to open a unit for reading if the name
was not found by SEARCH. To accomplish this, the program calls SEARCH and
gets an alternate return. It then calls to GETERR and determines if an error
occurred other than NAME NOT FOUND. To print the error message while
maintaining program control, the user calls PRERR.

Discussion

ERRVEC consists of eight halfwords; their contents are as follows:

Word Content Remarks
ERRVEC(1) Code Indicates origin of error and nature of error.
ERRVEC(2) Value On alternate return, this is the value of the

A-register. On normal return, this may have
special meaning (refer to PRWFIL and

EARCH error codes below).
ERRVEC(3) XX ERRVEC(3), ERRVEC(4), and ERRVEC(5)
ERRVEC(®4) XX contain a six—character filename of the rou-
ERRVEC(S) XX tine that caused the error. (ERRVEC(6) is
ERRVEC(6) XX available for expansion of names.

ERRVEC(7) Pointer to message For PRIMOS supervisor use.

ERRVEC(8) Message length For PRIMOS supervisor use.

Second Edition D-11

PRERR

Subroutines Reference lil: Operating System

D-12 Second Edition

PRWFIL Error Codes
Code Content Remarks
PD UNIT NOT OPEN
PE PRWFIL EOF Number of halfwords left
(End of File) (Information is in ERRVEC(2))
PG PRWFIL BOF Number of halfwords left
(Beginning of File) (Information is in ERRVEC(2))
PRWFIL Normal Return
ERRVEC(3) Record number.
ERRVEC®4) Word number.

PRWFIL Read-Convenient

ERRVEC(2) Number of halfwords read.
SEARCH Error Codes
ERRVEC(1) Code, with one of the following values:
Code Remarks
SA SEARCH, BAD PARAMETER.
SD UNIT NOT OPEN (truncate).
SD UNIT OPEN ON DELETE.
SH <Filename> NOT FOUND.
SI UNIT IN USE.
SK UFD FULL.
SL NO UFD ATTACHED.
SQ SEG-DIR-ER.
DJ DISK FULL.

)

3

SEARCH Normal Return

ERRVEC (2) Type, with one of the following values:

Type
0

HOW N =

Remarks

File is SAM.

File is DAM.

Segment directory is SAM.
Segment directory is DAM.
Directory is SAM.

Loading and Linking Information

V-mode and I-mode: No special action.

V-mode and I-mode with unshared libraries:

R-mode: No special action.

PRERR

Superseded Routines

Load NPFTNLB,

Second Edition D-13

RECYCL
L - L] a a a L] - |] -

Subroutines Reference Iil: Operating System

RECYCL

RECYCL tells PRIMOS to cycle to the next user. It is an
I-have-nothing-to-do-for-now call. Under PRIMOS II, RECYCL does nothing.

Usage

CALL RECYCL

Caution Do not use RECYCL to simulate a time delay.

D-14 Second Edition

)

SLITE

SLITE

Superseded Routines

This routine sets the sense light specified in argument A1 on or sets all sense
lights off. If A1 =0, all sense lights are reset off.

Usage

CALL SLITE (A1)
CALL SLITE (0)

Discussion

SLITE is of use only on Prime computers that have lights on the control panel.
Newer Prime computer models have no lights.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared librarics: Load NPFTNLB,

R-mode: No special action.

Second Edition D-15

SLITET

Subroutines Reference /ll: Operating System

SLITET

D-16 Second Edition

SLITET tests the setting of a sense light specified by the argument Al. The

result of this test (1 = on, 2 = off) is in the location specified by the argument R.

Usage

CALL SLITET (A1,R)

Discussion

SLITET is of use only on Prime computers that have lights on the control panel.

Newer Prime computer models have no lights.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

J

P

-
SSWTCH

SSWTCH

Superseded Routines

SSWTCH tests the setting of a sense switch specified by the argument Al. The
result of this test (1 = set, 2 = reset) is stored in the location specified in

argument R.

Usage

CALL SSWTCH (AL,R)

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared librarics: Load NPFTNLB.

R-mode: No special action.

Second Edition D-17

TEXTO$

Subroutines Reference 1il: Operating System

TEXTO$

Caution

D-18 Second Edition

TEXTOS$ checks a filename for valid format. This subroutine has been replaced
with FNCHKS.

Usage

CALL TEXTOS (filnam, namlen, trulen, textok)

Parameters

filnam
An integer array containing the filename to be checked.

namlen
The length of filnam in characters (INTEGER*2).

trulen

An (INTEGER*2) set to the true number of characters in filnam. trulen is
valid only if textok is .TRUE.. trulen is the number of characters in filnam
preceding the first blank. If there are no blanks, trulen is equal to namlen. See
SRCHSS for filename construction rules.

textok

A LOGICAL variable set to .TRUE. if filnam is a valid filename, otherwise
set to .FALSE..

Names longer than 32 characters are truncated with no warning message.

Example

To read a name from the terminal, check for validity, and set trulen to the actual
name length:

CALL 1$AAl2 (0, BUFFER, 80, $999)
CALL TEXTOS$ (BUFFER, 32, TRULEN, OK) /* SET TRULEN
IF (.NOT. OK) GOTO <bad-name>

J

D)

TEXTO$

Superseded Routines

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

Second Edition D-19

UPDATE

Subroutines Reference lll: Operating System

UPDATE

Under PRIMOS 11, this subroutine updates the current directory.

Usage

CALL UPDATE (key, 0)

Parameters

key ‘\

Value must be 1 to update current directory, send DSKRAT buffers to disk, if
necessary, and undefine DSKRAT in memory (INTEGER*2).

Discussion
This call is effective only under PRIMOS II. Under PRIMOS it has no effect.

Loading and Linking Information

V-mode and I-mode: No special action.
V-mode and I-mode with unshared libraries: Load NPFTNLB.

R-mode: No special action.

D-20 Second Edition

Index of Subroutines by Function

This index lists subroutines grouped by the general functions that they perform.
See the Index of Subroutines by Name to find a particular subroutine’s volume,
chapter, and page number.

Second Edition FX-1

Subroutines Reference Ill: Operating System

Access Category

Add an object’s name to an access category. ACSCAT
Modify an existing ACL on an object. AC$CHG
Set an object’s ACL to that of its parent directory. ACSDFT
Make an object’s ACL identical to that of another ACSLIK
object.

Obtain the contents of an object’s ACL. ACSLST
Convert an object from ACL protection to ACS$RVT
password protection.

Set a specific ACL on an object. ACS$SET
Determine whether an object is accessible for a CALACS
given acton,

Delete an access category. CAT$DL
Obtain the user-ID and the groups to which it GETID$
belongs.

Obtain the passwords of a subdirectory of the GPASS$$
current directory.

Determine whether an object is ACL-protected. ISACL$
Remove an object’s priority access. PASDEL
Obtain the contents of an object’s priority ACL. PASLST
Set priority access on an object. PASSET
Set the owner and nonowner passwords on an object. SPASS$S

Access Server Names

Catalog a server’s Low Level Name, ISNS$C
Look up a server’s Low Level Name. ISNSL
Recatalog a server’s Low Level Name, ISNSRC
Uncatalog a server’s Low Level Name, ISN$UC
Get the server name of a process. SRS$GN

FX-2 Second Edition

J

)

~

Arrays

Index of Subroutines by Function

Get the process numbers of all processes
associated with the server name.

List the server names on your system.

Get a character from an array.

Store a character into an array location.

Asynchronous Lines

Attach Points

Retun asynchronous line characteristics.
Return an asynchronous line number.

Set asynchronous line characteristics.

Set the attach point to a directory specified by the
pathname,

Set the attach point to a specified top-level directory
and partition.

Set the attach point to a specified top-level directory
on any partition.

Set the attach point to the home directory.

Set the attach point to a specified top-level directory
on a partition identified by logical disk number.

Set the attach point to the login directory.

SRS$GP

SRSSLN

GCHAR
SCHAR

ASSLST
ASSLIN
ASSSET

ATS$

AT$ABS

AT$SANY

AT$HOM
ATSLDEV

AT$OR

Second Edition FX-3

Subroutines Reference lil: Operating System

Binary Search

Buffer Output

Set the attach point to a directory subordinate to
the current directory.

Set the attach point to the root directory.

Set the attach point to a specified directory, and
optionally, make it the home directory.

Perform binary search in ordered table.

Provide free-format output to a buffer.

Command Environment

FX—4 Second Edition

Return caller’s maximum command environment
breadth.

Return caller’s maximum command environment
depth.

Parse command arguments according to a
character string “‘picture” of the command line.

Invoke a command from a running program,
Retrieve the value of a global variable.
Set the value of a global variable.

Return a list of commands valid at mini-
command level.

Retrieve the value of a CPL local variable,

ATSREL

AT$ROOT
ATCHSS$

BIN$SR

IOASRS

CES$BRD

CES$DPT

CL$PIX

Cp$
GVSGET
GVS$SET
LISTSCMD

LVSGET

)

Command Level

Set the value of a CPL local variable.

Return breadth of caller’s current command
environment.

Call a new command level after an error.
Call a new command level.

Return to PRIMOS.

Initialize the command environment.
Return serialization data.

Record command error status.

Signal an error in a subsystem.

Condition Mechanism

Continue scan for on-units.

Convert FORTRAN statement label to PL/1 format.
Create an on-unit (for FTN users).

Create an on-unit (for any language except FTN).
Create an on-unit (for PMA and PL/I users).
Perform a nonlocal GOTO.

Revert an on-unit (for FTN users),

Revert an on-unit (for any language except FTN).
Signal a condition (for FTN users).

Signal a condition (for any language except FTN.)

Index of Subroutines by Function

LVSSET
RD$CE_DP

CMLVSE
COMLV$
EXIT
ICE$
KLMSIF
SETRC$
SS$ERR

CNSIGS
MKLBS$F
MKONSF
MKONSP
MKONU$
PL1SNL
RVONSF
RVONUS$
SGNLSF
SIGNLS

Second Edition FX-5

Subroutines Reference lll: Operating System

Controllers, Asynchronous, Multi-line

Data Conversion

Date Formats

FX-6 Second Edition

Communicate with SMLC driver.
Assign AMLC line.
Communicate with AMLC driver.

Convert a string from lowercase to uppercase
or uppercase to lowercase.

Convert ASCII number to binary.
Convert binary number to ASCII.
Make a number printable if possible.

Convert the DATMOD field (as returned by
RDENS$$) in format DAY, MONDD YYYY

Convert the DATMOD field (as returned by
RDENS$$) in format DAY, DD MON YYYY.

Convert the TIMMOD field (as returned by
RDENS$A).

Convert binary date to quadseconds.
Convert ASCII date to binary format.
Convert binary date to ISO format.
Convert binary date to visual format.

Convert quadsecond date to binary format.

T$SLCO
ASNLNS$
T$SAMLC

CASESA

CNVASA
CNVBS$A
ENCDS$A
FDAT$A

FEDT$A

FTIMSA

CVSDQS
CVSDTB
CVSFDA
CVS$FDV
CV$QSD

)

Index of Subroutines by Function

Devices, Assigning or Attaching

Attach specified devices. ATTDEV
Provide or set aside available logical file unit. IOCS$G
Free a logical file unit number. IOCSSF
Disk I/0

Read ASCII from disk. ISADO7
Write binary to disk. 0$BDO07
Read binary from disk. I$BD0O7
Write ASCII to disk (fixed-length records). O$ADO8
Register disk format with driver. DKGEO$

Drivers, Device-independent

Write ASCII data. WRASC
r. Read ASCII data. RDASC
Write binary data. WRBIN
Read binary data. RDBIN
Open PRIMOS file and perform other nondata CONTRL

transfer functions. (Primarily for IOCS applications.)

Encryption, of Login Password

Encrypt login validation passwords. ENCRYPTS

Second Edition FX-7

Subroutines Reference lll: Operating System

EPFs

FX-8 Second Edition

Allocating and Deallocating Space for EPFs

Allocate space for EPF function return information.

Allocate space and set value of EPF function return
information.

Deallocate space for EPF function return information.

Management of EPFs

Perform the linkage allocation phase for an EPE.

Return the state of the command processing flags
in an EPE,

Deactivate the most recent invocation of a specified
EPF.

Perform the linkage initialization phase for an EPF.
Initiate the execution of a program EPF,

Map the procedure images of an EPF file into
virtual memory.

Combine functions of EPFSALLC, EPFSMAP,
EPFS$INIT, and EPFSINVK.

Modify user’s search rules to allow dynamic linking
to a library EPF.

Remove an EPF from a user’s address space.

Replace one EPF runfile with another.

ALCSRA
ALSSRA

FRESRA

EPFSALLC
EPF$CPF

EPF$DEL

EPF$INIT
EPFSINVK
EPF$MAP

EPF$RUN

LNS$SET

REMEPF$
RPL$

J

Index of Subroutines by Function

Information From In-memory User Profile

Return maximum number of dynamic segments. DY$SGS
Return maximum number of static segments. ST$SGS

Return highest segment number. TL$SGS
Registering EPFs

Return ready or suspended status for registered EPF. EPFSISREADY
Enable registration of EPFs EPF$REG
Enable unregistration of registered EPFs EPFSUREG

Error Handling, I/0

Set ERRVEC and perform a return or display ERRSET
ERRVEC message before returning control to

system.

Obtain contents of ERRVEC. GETERR
Display 1/O error message on user terminal. PRERR

Event Synchronizers and Event Groups

Creating, Using, and Destroying Event Synchronizers

Create an event synchronizer. SYNSCREA
Post a notice on an event synchronizer. SYNSPOST
Wait on an event synchronizer. SYNSWAIT
Perform a timed wait on an event synchronizer. SYNSTMWT

Second Edition FX-9

Subroutines Reference lll: Operating System

FX-10 Second Edition

Retrieve a notice from an event synchronizer.

Destroy an event synchronizer.

SYN$RTRV
SYNS$DEST

Creating, Using, and Destroying Event Groups

Create an event group.

Move an event synchronizer into an event group.
Remove an event synchronizer from an event group.
Cause a process to wait on an event group.

Cause a process to perform a timed wait on an
event group.

Retrieve a notice from an event group.

Destroy an event group.

SYNS$GCRE
SYNSMVTO
SYNSREMV
SYNSGWT
SYNS$GTWT

SYNS$SGRTR
SYN$GDST

Getting Information About Synchronizers and Groups

Return number of notices or waiting processes on
a synchronizer.

Return number of notices on a group at one or
all priority levels; if all levels, also return number
of waiting processes.

Indicate whether synchronizer is in group; and if
it is, return the group number, priority level, and
For Client Use field.

List the synchronizers in group and total number.

List the synchronizers in server and total number.

List the groups in server and total number.

SYN$CHCK

SYNSGCHK

SYNSINFO

SYNSLSIG

SYNSLIST
SYNSGLST

J

~

Executable Images

EXIT$ Condition

Restore an R-mode executable image.

Restore and resume an R-mode executable image.

Save an R-mode executable image.

Disable signalling of EXITS condition.
Return state of EXITS signalling.
Enable signalling of EXIT$ condition.

" File System Objects

Append a specified suffix to a pathname.
Extend or truncate a CAM file.

Retrieve a CAM file’s extent map from disk.
Set a CAM file’s allocation size value.
Change the open mode of an open file.

Close a file by name and return a bit string
indicating closed units.

Close a file system object by pathname.
Close a file system object by file unit number.
Close a file.

Change the name of an object in the current
directory.

Create a new subdirectory in the current directory.

Create a new password directory.

Index of Subroutines by Function

REST$$
RESUS$$
SAVES$

EX$CLR
EX$RD
EX$SET

APSFX$
CF$EXT
CFSREM
CF$SME
CH$SMOD
CL$SFNR

CLOSFN
CLOSFU
CLOSSA
CNAMSS

CREAS$$
CREPWS

Second Edition FX-11

Subroutines Reference Ill: Operating System

FX-12 Second Edition

Delete a file,
Create a new directory.

Search for specified types of entries in a directory
open on a file unit.

Read sequentially the entries of a directory open on
a file unit.

Return entries meeting caller-specified selection
criteria in a directory open on a file unit.

Return the contents of a named entry in a directory
open on a file unit.

Generate a filename based on another name.
Check for file existence.

Return a file system object’s entryname and parent
directory pathname.

Delete a file identified by a pathname.

Return information about a specified file unit.
Verify a supplied string as a valid filename.
Force PRIMOS to write modified records to disk.
Position to end-of-file.

Return the pathname of a specified unit, attach
point, or segment,

Tell whether the partition on which a file exists is
robust.

Determine whether an open file system object is
local or remote.

Return information on the system’s list of logical
disks.

List the disks a given user is using,

Convert an existing directory entry to a portal by
mounting the defined portal over the directory.

Read the contents of the Global Mount Table; return a
list of current-mounted disk partitions and the currently

mounted portals accessible by the calling program

Remove a portal entry from the specified directory path-

name.

DELESA
DIR$CR
DIRSLS

DIR$RD

DIRS$SE

ENT$RD

EQUALS$
EXSTS$A
EXTR$A

FIL$DL
FINFOS$
FNCHKS$
FORCEW
GENDS$A
GPATH$

GTROBS$

ISREM$

LDISK$

LUDSKS$
NAMSAD_PORTAL

NAMSL_GMT

NAMS$RM_PORTAL

index of Subroutines by Function

Open supplied name.
Read name and open.
Open supplied name with verification and delay.
Read name and open with verification and delay.

Return a logical value indicating whether a specified
partition supports ACL protection and quotas.

Position file.
Read, write, position, or truncate a file.

Return directory quota and disk record usage
information.

Set a quota on a subdirectory in the current directory.

Position in or read from a directory.

Read a line of characters from an ASCII disk file.
Return position of file.

Rewind file.

Set or modify an object’s atiributes in its directory
entry.

Delete a segment directory entry.
Determine if a segment directory entry exists.
Open a segment directory entry.

Position in, read an entry in, or modify the size of a
segment directory.

Return the size of a file system entry.

Open, close, delete, change access, or verify the
existence of an object.

Search for a file with a list of possible suffixes.
Open a scratch file with unique name.

Verify a supplied string as a valid pathname,
Truncate file.

Scan the file system structure.

Open a file anywhere in the PRIMOS file structure.

Check for file open.

OPENS$A
OPNP$A
OPNVSA
OPVPSA
PARSRV

POSNSA
PRWF$$
QSREAD

Q$SET
RDENS$
RDLINS
RPOSSA
RWNDSA
SATRS

SGD$DL
SGDSEX
SGDSOP
SGDR$$

SIZES
SRCH$$

SRSFX$
TEMP$A
TNCHKS$
TRNCS$A
TSCNSA
TSRC$$
UNIT$A

Second Edition FX-13

Subroutines Reference lll: Operating System

ISC

FX-14 Second Edition

Return the minimum and maximum file unit numbers
currently in use by this user.

Return a logical value indicating whether a wildcard
name was matched.

Write a line of characters to a file in compressed
ASCII format,

Establish an ISC Session

Initiator requests the session.
Recipient gets the session request.
Recipient accepts the session.

Initiator gets the session request response.

ISC Message Exchange

Allocate a buffer for a message data part,
Free an allocated data part buffer.
Send a message.

Receive a message.

Monitor ISC Message Exchange Session

Get sessions owned by your server.
Get session attributes.
Get session status.

Get statistics about a session.

UNITS$

WILD$

WTLINS

ISSRS
IS$GRQ
IS$AS
ISSGRS

ISSAB
ISSFB

IS$SM
ISSRM

IS$GSO
IS$GSA
IS$GSS
IS$STA

Index of Subroutines by Function

Terminate ISC Sessions or Respond to Exceptions

Terminate the caller’s side of a session. IS$TS
Get an exception. IS$GE
Clear an exception. IS$CE

Keyboard or ASR Reader

Input ASCII from terminal or ASR reader. ISAAQ1

Perform same function as ISAAQ1 but also allow I$AA12
input from a cominput file.

Logging

Log a user message to the DMS server. DSS$SEND_CUSTOMER_UM

Matrix Operations

Generate permutations. PERM

Generate combinations. COMB

The following groups contain subroutines for single-precision, double-precision,
integer, and complex operations, respectively.

(* indicates that a subroutine is not available.)

Second Edition FX-15

Subroutines Reference IlI: Operating System

Memory

FX—-16 Second Edition

Set matrix to identity matrix.

Set matrix to constant matrix.

Multiply matrix by a scalar.

Perform matrix addition.

Perform matrix subtraction.

Perform matrix multiplication.

Calculate transpose matrix,

Calculate adjoint matrix.

Calculate inverted matrix.

Calculate signed cofactor.

Calculate determinant.

Solve a system of linear equations,

Allocate memory on the current stack.

Move a block of memory.

Make the last page of a segment available.
Make the last page of a segment unavailable.
Allocate user-class dynamic memory.
Allocate process-class dynamic memory.

Allocate subsystem-class dynamic memory.

MIDN, DMIDN,
IMIDN, CMIDN

MCON, DMCON,
IMCON, CMCON

MSCL, DMSCL,
IMSCL, CMSCL

MADD, DMADD,
IMADD, CMADD

MSUB, DMSUB,
IMSUB, CMSUB

MMLT, DMMLT,
IMMLT, CMMLT

MTRN, DMTRN,
IMTRN, CMTRN

MADJ, DMAD],
IMADJ, CMADJ

MINV, DMINYV,
*, CMINV

MCOF, DMCOF,
IMCOF, CMCOF

MDET, DMDET,
IMDET, CMDET

LINEQ, DLINEQ,
* CLINEQ

ALOCSS
MOVEW§
MMS$SMLP
MMS$MLP
STRSAL
STR$AP
STR$AS

r Index of Subroutines by Function
”~

Allocate user-class dynamic memory. STR$AU

Free process-class dynamic memory. STR$FP

Free user-class dynamic memory. STR$FR

Free subsystem-class dynamic memory. STRSFS

Free user-class dynamic memory. STRSFU

Message Facility

-

Return the receiving state of a user. MSGS$ST
Set the receiving state for messages. MGSETS
Receive a deferred message., RMSGD$
Send an interuser message. SMSGS$

r

Numeric Conversions

Convert string (decimal) to 16-bit integer. CHS$FX1
Convert string (decimal) to 32-bit integer. CHS$FX2
r Convert string (hexadecimal) to 32-bit integer. CHS$HX2
Convert string (octal) to 32-bit integer. CH$0C2
Paper Tape
Control functions for paper tape. C$P02
Input ASCII from the high-speed paper-tape reader. ISAPO2
Output binary data to the high-speed paper-tape O$BP02
punch.

Second Edition FX-17

)

Subroutines Reference Ili: Operating System

Input one character from the high-speed paper-tape P1IB
reader to Register A.
Output one character to the high-speed paper-tape P10B
punch from Register A.
Input one character from paper tape, set high-order P1IN
bit, ignore line feeds, send a line feed when carriage
return is read.
Output one character to the high-speed paper-tape P1OU
punch.

Parsing
Parse a PRIMOS command line. CMDLS$A
Parse character string into tokens. GT$PAR

Peripheral Devices

Line Printers

Centronics LP. OS$ALO4

Parallel interface to line printer (MPC). OS$ALO6

Versatec printer. O$AL14

Move data to LPC line printer. T$SLMPC
Access a spooler queue. SPOOLS$
Place file in spool queue and perform SPOOLER SP$REQ

command functions.

FX-18 Second Edition

J

Index of Subroutines by Function

Printer/Plotter

Versatec. O$AL14
Versatec. T$VG
Card Reader/Punch

Input from parallel card reader. ISAC03
Input from serial card reader. ISACO09
Read and print card from parallel interface reader. ISAC15
Input from MPC card reader. T$CMPC
Parallel interface to card punch. O$ACO03
Parallel interface to card punch and print on card. O$AC15
Raw data mover. T$PMPC

Magnetic Tape

Write EBCDIC to 9-track. O$AMI13
Read EBCDIC from 9-track. I$SAM13
Raw data mover. T$SMT

Phantom Processes

Switch logout notification on or off. LONSCN
Read logout notification information. LONSR
Start a phantom process. PHNTMS$

Second Edition FX-19

Subroutines Reference Ill: Operating System

Process Suspension

Suspend a process for a specified interval,

Suspend a process (interruptible).

Query User
Prompt and read a name.
Prompt and read a number (binary, decimal, octal, or
hexadecimatl).
Ask question and obtain a YES or NO answer.
Randomizing

Generate random number and update seed, based
upon a 32-bit word size and using the Linear
Congruential Method.

Initialize random number gencrator sced.

Search Rules

Locate a file using a search list and open the file.
Create a file if the file sought does not exist.

Locate a file using a search list and a list of suffixes.
Open the located file, or create a file if the file sought
does not exist.

Disable an optional search rule. Used to disable rules
that have been enabled using SREENABL.

FX-20 Second Edition

SLEEP$
SLEPSI

RNAMSA
RNUMS$A

YSNOSA

RANDSA

RNDISA

OPSR$

OPSRS$

SR$ABSDS

J

~

3

Semaphores

Index of Subroutines by Function

Add a rule to the beginning of a search list or before
a specified rule.

Add a rule to the end of a search list or after a
specified rule.

Create a search list.
Delete a search list.

Disable an optional search rule. Used to disable rules
that have been enabled using SRSENABL.

Enable an optional search rule. Enabled rules can
be disabled using SR$DSABL or SREABSDS.

Determine if a search rule exists.

Free list structure space allocated by SRSLIST or
SRS$READ.

Initialize all search lists to system defaults.
Return the names of all defined search lists.
Read the next rule from a search list.

Read all of the rules in a search list.
Remove a search rule from a search list.
Set the locator pointer for a search rule.

Set a search list using a user-defined search rules
file.

Release (close) a named semaphore.
Drain a semaphore.

Notify a scmaphore.

Open a set of named semaphores.
Open a set of named semaphores.
Periodically notify a semaphore.

Return number of processes waiting on a semaphore.

SRSADDB

SR$ADDE

SR$CREAT
SR$DEL
SR$DSABL

SRSENABL

SRSEXSTR
SR$FR_LS

SR$INIT
SR$LIST
SRSNEXTR
SR$READ
SR$REM
SRS$SETL
SR$SSR

SEMS$CL
SEMS$DR
SEMS$NF
SEMS3OP
SEM$OU
SEMS$TN
SEMSTS

Second Edition FX-21

Subroutines Reference lil: Operating System

Sorting

FX-22 Second Edition

Wait on a specified named semaphore, with timeout.

Wait on a semaphore.

Sort one file on ASCII key(s).

Sort (multiple key types) or merge sorted files.

Merge sorted files.

Return next merged record to sort.
Close merged input files.

Sort one or several input files.
Prepare sort table and buffers.
Get input records.

Sort tables prepared by SETUSS.
Get sorted records.

Close all sort units.

Heap sort.

Partition exchange sort.
Diminishing increment sort.
Radix exchange sort.

Insertion sort.

Bubble sort.

Binary search or build binary table.

SEM$TW
SEM$WT

SUBSRT
ASCS$$
MRG1$S
MRG2$S
MRG3$S
SRTF$S
SETUSS
RLSESS
CMBNS$S
RTRN$S
CLNUS$S
HEAP
QUICK
SHELL
RADXEX
INSERT
BUBBLE
BNSRCH

J

r
r

)

Strings

Compare two strings for equality.
Compare two substrings for equality.
Fill a string with a character.

Fill a substring with a given character.

Get a character from a packed string.

Left justify, right justify, or center a string within

a field.

Locate one string within another,

Locate one substring within another.
Move a character between packed strings.
Move one string to another.

Move one substring to another.

Compare two character strings.
Determine the operational length of a string.
Rotate string left or right.

Rotate substring left or right.

Shift string left or right.

Shift substring left or right.

Test for pathname.

Determine string type.

Return unique bit string.

Convert UID$BT output into character string,

Index of Subroutines by Function

CSTRSA
CSUBSA
FILL$A
FSUB$A
GCHRSA
JSTRSA

LSTRSA
LSUBSA
MCHRSA
MSTRS$A
MSUBS$A
NAMEQ$
NLENSA
RSTRSA
RSUBSA
SSTRSA
SSUBSA
TREESA
TYPESA
UID$BT
UID$SCH

Second Edition FX-23

Subroutines Reference llI: Operating System

System Administration
General System Administration
Change the user ID of the System Administrator. CUSSCHANGE_ADMIN
Enable changes to the system attributes. CUSSCHANGE_SYSTEM
Check System Administration Directory (SAD) hashing CUS$SCHECK_SAD
status for the system or a project.
Close a SAD that has been opened. CUSSCLOSE_SAD
Create a System Administration Directory (SAD). CUSS$CREATE_SAD
List the attributes of the overall system, CUSSLIST_SYSTEM
Open an existing System Administration Directory CUSSOPEN_SAD
(SAD).
Rebuild the SAD for either the system or a project. CUSSREBUILD_SAD
Check if the user is the System Administrator of the open CUS$SA_MODE
SAD, ﬂ
Group Administration
Check if an ACL group is already a system ACL group ~ CUS$CHECK_GROUP
or project ACL group.
Add an ACL group to the SAD. CUS$GROUP \
List the system and project ACL groups. CUSSLIST _GROUP_NAMES
List the projects using an ACL group. CUSSLIST_GROUPS_PROJECTS
List the users of a system or project ACL group. CUSSLIST_GROUPS_USERS
Project Administration
Check if a project is on the system. CUS$CHECK_PROJECT_ID
List the projects using an ACL group. CUSSLIST_GROUPS_PROJECTS

FX—-24 Second Edition ‘\

Index of Subroutines by Function

List the attributes of a specific project.

Add, delete, or change a specific project.

User Administration

Check if a user is on the system or a member of a project.
List the users of a system or project ACL group.
List the attributes of a specific user.
r List the users on the system or on a project.
Add, delete, or change a specific user.

Check the network to see if a particular user ID
is valid on other machines.

~ System Information

General System Information

Return cold-start setting of the ABBREYV switch.
r Determine if the routine is dynamically accessible.
| Return text of the specified system prompt.

Return the model number of the Prime computer.

Return the current date and time.

Return text representation of an error code.

Retumn text representation of an error code for specified
PRIMOS subsystem.

Return PRIMOS II information.
Return the current PRIMOS system name,
Return information on the system’s list of logical disks.

[4 Indicate if login-over-login is permitted.

CUSSLIST_PROJECT
CUSS$PROJECT

CUSSCHECK_USER_ID
CUSSLIST _GROUPS_USERS
CUSSLIST_USER
CUSSLIST_USER_NAMES
CUSSUSER
CUSS$VERIFY_USER

ABSSWS$
CKDYN$
CL$MSG
CPUIDS$
DATE$
ERTXTS$
ERSTEXT

GINFO
GSNAMS
LDISK$
LOVS$SW

Second Edition FX-25

Subroutines Reference lll: Operating System

Return information about a PRIMOS line used for NTS$LTS
LAN terminal service.

Return the operating system revision number. PRISRV
Determine access to a segment. RSEGACS
Check validity of a system name passed to it. SNCHKS$
Return the user number and count of users. USERS$

System Time Information

Return the CPU time since login. CTIMSA
Return today’s date, American style. DATES$A
Return today’s date as day of year (the Julian date). DOFYS$A
Return the disk time since login. DTIM$A
Return today’s date, European (military) style. EDATS$A
Return the time of day. TIMESA

System Status and Metering Information

Return data about a disk partition, DS$AVL
Return data about a process’s environment. DSSENV
Return data about file units. DS$UNI
Return a variety of metering information. G$SMETR
Timers
Set and read various timers. LIMITS
Create a timer. TMR$CREA
Destroy a timer. TMRS$DEST

FX-26 Second Edition

¢~ User Information

Set an absolute timer.

Set an interval timer.

Set a repetitive timer.

Cancel a timer.

Return the timer type and information.

List the identifiers of the timers within a server.

Check that a process has a given amount of time slice

left.

Change login validation password.

Expand a line using abbreviations preprocessor.
Generate a new login validation password.

Validate a name.

Determine whether a forced logout is in progress.

List the disks a given user is using.

Log out a user.

Return a list of devices that a user can access.
Return the user’s project identifier.

Return amount of CPU time used since login.
Validate syntax of a password.

Display PRIMOS command prompt.

Return user number of initiating process.
Test whether current user is supervisor.

Display standard message showing times used.

Return timing information and user identification.

Return permanent time information.

Return current system time.

Index of Subroutines by Function

TMR$SABS
TMRS$SINT
TMRS$SREP
TMRS$SCANL
TMR$GTMR
TMRSLIST

ASSURS

CHGSPW
COMSAB
GENS$PW
IDCHKS$
INSLO
LUDSK$
LOGOSS
LUDEVS$
PRJIDS$
PTIME$
PWCHKS$
READY$
SID$GT
SUSR$
TISMSG
TIMDAT
TMRSGINF
TMRS$GTIM

Second Edition FX-27

Subroutines Reference llI: Operating System

User Terminal

FX-28 Second Edition

Convert local time to Universal Time.
Convert Universal Time to local time,
List users with same name as caller.
Return user type of current process.

Validate a name against composite identification.

Functions

Control functions for user terminal.

Output ASCII to the user terminal or ASR punch.
Inhibit or enable CONTROL-P.

Get next character from terminal or command file.

Get next character from command line until carriage
return,

Move characters from terminal or command file to
memory.

Read a line of text from the terminal or from a
command file.

Supervise the editing of input from a terminal or a
command file (callable from C).

Supervise the editing of input from a terminal or a
command file.

Read or set erase and kill characters.

Output count characters to the user terminal
followed by a line feed and carriage return.

Output count characters to the user terminal.

Read one character from the user terminal into
Register A.

Read one character from the user terminal.

TMRS$LOCALCONVERT
TMRS$UNIVCONVERT
UNOSGT

UTYPES$

VALIDS

C$A01
O$AAQ1
BREAKS$
CIIN
C1IN$

CNIN$

COMANL

ECL$CC

ECL$CL

ERKLS$$
TNOU

TOVFD$
T1IB

T1IN

))

)

)

Write one character from Register A to the user

terminal.

Output char to the user terminal. The data type

must be a 16-bit integer in F77.
Input decimal number.
Input an octal number.

Input a hexadecimal number.

Output a six-character signed decimal number,
Output a six-character unsigned octal number,

Output a four-character unsigned hexadecimal

number.

Output carriage return and line feed.

Input From User Terminal

Read a character.
Read a character.
Read a character, suppressing echo.

Read a line.

Read a specified number of characters.

Read a line into a PRIMOS buffer.
Parse a command line.

Read a character (function).

Read a character (procedure).
Read a decimal number.

Read a hexadecimal number.

Read an octal number.

Check for presence of characters in user’s terminal

output buffer.

Index of Subroutines by Function

T10B

T10U

TIDEC
TIOCT
TIHEX
TODEC

C1IN
C1IN$
CINES
CL$GET
CNINS
COMANL
RDTKS$$
T1IB
T1IN
TIDEC
TIHEX
TIOCT
TTY$OUT

Second Edition FX-29

Subroutines Reference lil: Operating System

FX-30 Second Edition

Output to User Terminal

Print a standard error message from PRIMOS or a
PRIMOS subsystem.

Print a standard error message.
Provide free-format output.

Provide free-format output, for error messages.

Write characters to terminal, followed by NEWLINE.,

Write characters to terminal.

Write a signed decimal number.

Write a hexadecimal number.

Write a NEWLINE.

Write an octal number.

Write a decimal number, without spaces.
Write one character from Register A.

Write one character.

Control Output to User Terminal

Inhibit or enable BREAK function.

Return information about command output settings.
Switch input between the terminal and a file.
Switch output between the terminal and a file,
Control the way PRIMOS treats the user terminal.
Read or set the erase and kill characters.

Determine if there are pending quits.

Check for unread terminal input characters.

Clear the terminal input and output buffers.

ERSPRINT

ERRPR$
IOAS
IOASER
TNOU
TNOUA
TODEC
TOHEX
TONL
TOOCT
TOVFD$
T10B
T10U

BREAKS$
COSGET
COMISS
COMOS$$
DUPLX$
ERKLS$$
QUITS
TTYSIN
TTYS$RS

J

)

Index of Subroutines by Name

AS$xy series FORTRAN compiler addition functions. I B-7
AB3SWS$ Return cold-start setting of ABBREV switch. 111 2-3
ACSCAT Add an object’s name to an access category. II 2-3
ACSCHG Modify an existing ACL on an object. I 2-5
ACSDFT Set an object’s ACL to that of its parent directory. 11 2-7
ACSLIK Set an object’s ACL like that of another object. 11 2-9
ACSLST Obtain the contents of an object’s ACL. II 2-11
ACSRVT Conveltt an object from ACL protection to password I 2-13
protection.
ACS$SET Set a specific ACL on an object. I 2-14
ALCSRA Allocate space for EPF function return information. I 4-16
ALOCSS Allocate memory on the current stack. il 4-3
ALS$RA Allocate space and set value of EPF function. I 4-21
APSFX$ Append a specified suffix to a pathname. I 4-4
ASCS$$ Sort or merge sorted files (multiple file types and key v 17-12
types). (V-mode)
ASCS$$ Sort or merge sorted files (multiple file types and key v 1743
types). (R-mode)
ASCSRT Synonym for ASCS$$. See above.
ASSLIN Return asynchronous line number. v 8-30
ASSLST Retrieve asynchronous line characteristics. v 8-25
ASNLN$ Assign AMLC line. v 8-20
ASS$SET Set asynchronous line characteristics. v 8-31
ASSURS Check process has given amount of time slice left. 111 2-28
ATS Set the attach point to a directory specified by pathname. 1I 3-3

Second Edition SX-1

Subroutines Reference lll: Operating System

AT$ABS Set the attach point to a specified top-level directory and 11 3-6
partition.
AT$ANY Set the ntaCh point to a specified top-level directoryon 11 3-9
any partition.
AT$HOM Set the attach point to the home directory. II 3-11
ATSLDEV Set the attach point by top-level directory and logical disk 1I 3-13
number.
AT$OR Set the attach point to the login directory. I 3-15
AT$REL Set the attach point relative to the current directory. II 3-17
AT$ROOT Set the attach point to the root directory I 3-19
ATCH$$ Set the attach point to a specified directory. I A-3
ATTDEV Change a device assignment temporarily. v 3-5
BIN$SR Perform binary search in ordered table. 11 6-21
BNSRCH Binary search. v 1749
BREAKS$ Inhibit or enable BREAK function. I 3-55
BUBBLE Bubble sort. v 17-51
C$xy series FORTRAN compiler conversion functions. I B-5
C$A01 Control functions for user terminal. v 64
C$MO5 Control functions for 9-track tape. v D-10
C$M10 Control functions for 7-track tape. v D-10
C$M11 Control functions for 7-track tape (BCD). v D-10
C$M13 Control functions for 9-track tape (EBCDIC). Iv D-10
C$P02 Control functions for paper tape. v 6-11
CIIN Read a character. 11 3-5
C1INS$ Read a character. I 3-6
CINE$ Read a character, suppressing echo. I 3-7
CALACS De.terminc whether an object is accessible for a given II 2-16
action.
CASE$A Convert between uppercase and lowercase. v 14-2

SX-2 Second Edition

J

J

CAT$SDL
CE$BRD
CES$DPT
CFSEXT
CFSREM
CF$SME
CHS$FX1
CH$FX2
CHS$SHX2
CH$MOD
CH$OC2
CHGSPW
CKDYN$
CLSFNR

CL$SGET
CL$MSG
CL3$PIX
CLINEQ
CLNUS$S
CLOSFN
CLOSFU
CLOS$A
CMADD
CMADJ
CMBNS$S
CMCOF
CMCON
CMDET
CMDLSA

Index of Subroutines by Name

Delete an access category. IT
Return caller’s maximum command environment breadth. II

Return caller’s maximum command environment depth. 1II

Extend or truncate a CAM file. I
Get a CAM file’s extent map. I
Set a CAM file’s allocation size value. II
Convert string (decimal) to 16-bit integer. 111
Convert string (decimal) to 32-bit I
Convert string (hexadecimal) to 32-bit integer. III
Change the open mode of an open file. I
Convert string (octal) to 32-bit integer.)il
Change login validation password. 1
Determine if routine is dynamically accessible. I
Close a file by name and return a bit string indicating 11
closed units,

Read a line. 111
Return text of specified system prompt. III

Parse command line according to a command line picture. 1I

Solve linear equations (complex). v
Close all sort units after SRTFS. v
Close a file system object by pathname. 11

Close a file system object by file unit number. I

Close a file. v
Matrix addition (complex). IV
Calculate adjoint matrix (complex). | AY
Sort tables prepared by SETUS. v
Calculate signed cofactor (complex). v
Set constant matrix (complex). v
Calculate matrix determinant (complex). IV
Parse a command line. v

Second Edition

2-18
6-2
6-3
4132
4134
4137
6-3
6-5
6-7

6-9
2-29
24
47

3-8
2-5

18-7
17-29
4-9
4-10
15-2
18-9
18-11
17-27
18-13
18-15
18-17
16-2

SX-3

Subroutines Reference Ill: Operating System

CMIDN

CMINV

CMLVSE

CMMLT

CMSCL

CMSUB

CMTRN

CNAMSS

CNINS

CNSIGS

CNVASA

CNVBS$A

COSGET

COMSAB

COMANL

COMB

COMISS

COMLV$

COMOS$$

CONTRL

Cp$

CPUID$

CREAS$$

CREPWS$

CSTRSA

CSUBSA

CTIMS$A
CUS$CHANGE_ADMIN
CUSSCHANGE_SYSTEM
CUS$CHECK_GROUP

SX—4 Second Edition

Set matrix to identity matrix (complex).
Calculate signed cofactor (complex).
Call new command level after an error.
Matrix multiplication (complex).
Multiply matrix by scalar (complex).
Matrix subtraction (complex).

Calculate transpose matrix (complex).

Change the name of an object in the current directory.

Read a specified number of characters.
Continue scan for on-units.

Convert ASCII number to binary.

Convert binary number to ASCII.

Return information about command output settings.
Expand a line using Abbreviations preprocessor.
Read a line into a PRIMOS buffer.

Generate matrix combinations.

Switch input between the terminal and a file.
Call a new command level.

Switch output between the terminal and a file.
Perform device-independent control functions.
Invoke a command from a running program.
Return model number of Prime computer.
Create a new subdirectory in the current directory.
Create a new password directory.

Compare two strings for equality.

Compare two substrings for equality.

Return CPU time since login.

Change user ID of the System Administrator.
Enable changes to the system attributes.

Check if ACL group is on a system or a project.

v
I\"
III
v
v
v
v

1L
11T
v
Iv
111
I
III
v
I
I
III
1AY

III
II

II

v
v
v
v
v
v

18-19
18-21
55
18-23
18-25
18-27
18-29
4-11
3-11
7-20
14-4
14-6
3-56
231
3-13
18-5
3-57
5-6
3_58
4-11
6-8
2-7

A7
10-3
10-5
12-2
19-8
19-10
19-16

J

-~

)

)

CUS$SCHECK_PROJECT _ID
CUS$CHECK_SAD
CUS$CHECK_USER _ID
CUSS$CLOSE_SAD
CUS$CREATE_SAD
CUS$GROUP
CUSSLIST_GROUP_NAMES
CUSSLIST_GROUPS_PROJECTS
CUSSLIST_GROUPS_USERS
CUSSLIST_PROJECT
CUSSLIST_PROJECT_NAMES
CUSSLIST_SYSTEM
CUSSLIST_USER
CUSSLIST_USER_NAMES
CUSS$OPEN_SAD
CUSSPROJECT
CUSS$REBUILD_SAD
CUS$SA_MODE

CUS$USER
CUSS$VERIFY_USER
CVs$DQS

CVS$DTB

CVS$FDA

CVS$FDV

CV$QSD

DS$xy series
DSINIT
DATES$
DATESA

Index of Subroutines by Name

Check if a project is on the system.

Check SAD hashing status for system or project.
Check if user is on system or member of project.
Close a System Administration Directory (SAD).
Create a System Administration Directory (SAD).
Add an ACL group to the SAD.

List the system and project ACL groups.

List the projects using an ACL group.

List users of a system or project ACL group.

List the attributes of a specific project.

List the projects on the system.

List the attributes of the system.

List the attributes of a specified user.

List the users on the system or project.

Open a System Administration Directory (SAD).
Add, delete, or change a specific project.

Rebuild a SAD for a system or project.

Check if user is System Administrator of the SAD.

Add, delete, or change a specific user.

Check network for valid user ID on other systems.

Convert binary date to quadseconds.
Convert ASCII date to binary format.
Convert binary date to ISO format.
Convert binary date to visual format.

Convert quadsecond date to binary format.

FORTRAN compiler division functions.
Initialize disk.
Return current date and time,

Return current date, American style.

Second Edition

I
I

v

1%

19-18
19-19
19-22
19-24
19-25
19-29
19-31
19-33
19-36
19-39
19-43
19-45
19-50
19-55
19-58
19-61
19-67
19-69
19-70
19-76
6-12

6-13

6-15

6-17

6-19

B-8
D-2
2-11
12-3

SX-5

Subroutines Reference lll: Operating System

DELE$A Delete a file. v 15-3
DIR$CR Create a new directory. II 4-15
DIRSLS Search for specified types of entries in a directory open I 4-17
on a file unit.
DIR$RD Read sequentially the entries of a directory open on a file 11 4-24
unit,
DIRSSE Return directory entries meeting caller—specified IT 4-29
selection criteria.
DISPLY Update sense light settings (obsolete). i D-2
DKGEO$ Register disk format with driver. v 5-3
DLINEQ Solve a system of linear equations (double precision). v 18-7
DMADD Matrix additions (double precision). v 18-9
DMADJ] Calculate adjoint matrix (double precision). v 18-11
DMCOF Calculate signed cofactor (double precision). v 18-13
DMCON Set matrix to constant matrix (double precision). v 18-15
DMDET Calculate determinant (double precision). v 18-17
DMIDN Set matrix to identity matrix (double precision). v 18-19
DMINV Calculate inverted matrix (double precision). IV 18-21
DMMLT Matrix multiplication (double precision). v 18-23
DMSCL Multiply matrix by a scalar (double precision). v 18-25
DMSUB Matrix subtraction (double precision). v 18-27
DMTRN Calculate transpose matrix (double precision). v 18-29
DOFYS$A Return today’s date as day of year (Julian). v 124
DSSAVL Return data about a disk partition. 111 2-61
DSSENV Return data about a process’s environment. 111 2-63
DS$UNI Return data about file units. I 2-67
DS$SEND_CUSTOMER_UM Send a message to the DMS server III 2-12
DTIM$A Return disk time since login, v 12-5
DUPLX$ Control the way PRIMOS treats the user terminal. III 3-60
DY$SGS Return maximum number of dynamic segments. III 424

SX-6 Second Edition

J

Y

)

ES$xy series

ECL$CC

ECL$CL
EDAT$A
ENCDSA

ENCRYPTS$
ENTSRD

EPFSAL
EPFSALLC
EPF$CP

EPF$CPF

EPF$DEL
EPF$DL
EPFSINIT
EPF$NT
EPF$SINVK
EPF$VK
EPFSISREADY
EPFSMAP

EPFSMP

EPF$REG
EPFSRN

EPF$RUN

EPFSUREG
EQUALS$

Index of Subroutines by Name

FORTRAN compiler exponentiation routines.

Supervise editing of input from terminal or command file III
(callable from C).
Interface to ECL$CC (for non-C programs). 1L
Today’s date, European (military) style. v
Convert a numeric value to FORTRAN (printable) v
format.
Encrypt login validation passwords. I
Return the contents of a named entry in a directory open 1I
on a file unit.
Perform the linkage allocation phase for an EPF. II
Perform the linkage allocation phase for an EPE. II
Return the state of the command processing flags in an I
EPF.
Return the state of the command processing flags in an II
EPF,
Deactivate the most recent invocation of a specified EPE. 11
Deactivate the most recent invocation of a specified EPE. 1I
Perform the linkage initialization phase for an EPF. II
Perform the linkage initialization phase for an EPF, II
Initiate the execution of a program EPF. II
Initiate the execution of a program EPF. I
Indicate whether a registered EPF is ready or suspended. 1I
Map the procedure images of an EPF file into virtual II
memory.
Map the procedure images of an EPF file into virtual II
memory.
Register an EPF. I
Combine functions of EPFSALLC, EPFSMAP, II
EPFS$INIT, and EPFSINVK.
Combine functions of EPF$ALLC, EPFSMAP, I
EPFSINIT, and EPFSINVK.
Unregister an EPF. I
Generate a filename based on another name. II
Second Edition

B-8
3-14

3-17
12-6
14-8

6-23
4-38

5-3
5-5

5-7
5-7

5-9

5-11
5-11
5-15
5-17

5-17

5-20
5-22

5-22

5-25
4-40

SX-7

ERKL$$
ERSPNT
ER$PRINT
ERRPR$
ERRSET
ER$TEXT
ER$TXT
ERTXTS$
EX$CLR
EX$RD
EXS$SET
EXIT
EXST$A
EXTR$A

F$xxyy series

FDATS$A

FEDT$A

FIL$DL
FILL$A
FINFO$
FNCHK$
FORCEW
FRES$RA
FSUB$A
FTIM$A

SX-8 Second Edition

Subroutines Reference lli: Operating System

Read or set the erase and kill characters.

Print error messages on terminal (FTN).

Print error messages on terminal.

Print a standard error message (obsolete).

Set ERRVEC (a system error vector) (obsolete).
Return error message to a variable.

Return error message to a variable (FTN).
Return text associated with error code (obsolete).
Disable signalling of EXITS$ condition.

Return state of EXITS signalling.

Enable signalling of EXIT$ condition.

Return to PRIMOS.

Check for file existence.

Return an object’s entryname and parent directory
pathname.

FORTRAN compiler floating-point functions.

Convert the DATMOD field returned by RDENSS to
DAY MONDD YYYY.

Convert the DATMOD field returned by RDENSS to
DAYDDMONYYYY.

Delete a file identified by a pathname.

Fill a string with a character.

Return information about a specified file unit.
Verify a supplied string as a valid filename.

Force PRIMOS to write modified records to disk.

Deallocate space for EPF function return information.

Fill a substring with a specified character.
Convert the TIMMOD field returned by REDN$$.

I

I
IIx
I
III
III
III
i
III
I
III

II

v

v

II
v
II
I
II
III
v
v

3-63
3-34
3-34
D-3
D-5
2-15
2-15
D-7
7-36
7-37
7-38
5-7
15-4

B-8
14-10

14-11

J

)

J

)

GSMETR
GCHAR
GCHR$A
GENDS$A
GENSPW
GETERR
GETID$
GINFO
GPAS$$

GPATH$

GSNAMS
GTSPAR
GTROBS$

GVSGET
GVSSET

H$xy series

HEAP

ISAAQ1
ISAA12
ISACO3
ISAC09
ISAC15
ISADO7
ISAMOS
ISAM10
ISAM11

Index of Subroutines by Name

Return system metering information.

Get a character from an array.

Get a character from a packed string. I\%
Position to end of file. v
Generate a login validation password. I
Return ERRVEC contents (obsolete). I
Obtain the user ID and the groups to which it belongs. I
Return PRIMOS 11 information. 111
Obtain the passwords of a subdirectory of the current I
directory.
Return the pathname of a specified unit, attach point,or 1I
segment.
Return current PRIMOS system name. III
Parse character string into tokens. I
Finq out whether current attach point is on a robust II
partition.
Retrieve the value of a global variable. I
Set the value of a global variable. Il
FORTRAN compiler complex number storage. I
Heap sort. IV
Read ASCII from terminal, v
Read ASCII from terminal or input stream by REDN$S. IV
Input from parallel card reader. v
Input from serial card reader. v
Read and print card from parallel card reader. v
Read ASCII from disk. v
Read ASCII from 9-track tape. v
Read ASCII from 7-track tape, v
Read BCD from 7-track tape. v
Second Edition

I
I

2-72
6-24
10-11
15-5
2-32

2-19
2-17
2-21

4-53

2-19
6-25
3-21

6-11
6-13

17-52

6-7
6-9
7-26
7-28
7-30
54
D-12
D-12
D-12

SX-9

Subroutines Reference lll: Operating System

ISAM13
ISAP02
I$BDO7
I$SBMO5
I1$BM10
ICE$
IDCHK$
IMADD
IMAD]
IMCOF
IMCON
IMDET
IMIDN
IMMLT
IMSCL
IMSUB
IMTRN
INSLO
INSERT
I0AS%
IOASER
IOASRS
IOCS$F
I0CS$_FREE_LOGICAL_UNIT
I0CS$G
1I0CS$_GET_LOGICAL_UNIT
ISACLS
ISSAB
ISSAS
IS$CE

SX-10 Second Edition

Read EBCDIC from 9-track tape.
Read paper tape (ASCII).

Read binary from disk.

Read binary from 9-track.

Read binary from 7-track.

Initialize the command environment.
Validate a name.

Matrix addition (integer).

Calculate adjoint matrix (integer).

Calculate signed cofactor (integer).

Set matrix to constant matrix (integer).

Calculate matrix determinant (integer).

Set matrix to identity matrix (integer).
Matrix multiplication (integer).
Multiply matrix by scalar (integer).
Matrix subtraction (integer).

Calculate transpose matrix (integer).

Determine if a forced logout is in progress.

Insertion sort.

Provide free-format output.

Provide free-format output, for error messages.

Perform free-format output to a buffer.
Free logical unit.

Free logical unit.

Get logical unit.

Get logical unit.

Determine whether an object is ACL-protected.

Allocate an ISC message buffer.
Accept an ISC session.

Clear an ISC session exception.

v
v
v
v
v
I
III
IV
v
v
v
Iv
v
v
v
v
v
11
|AY
III

D-12
6-12
5-6
D-12
D-12
5-8
2-33
18-9
18-11
18-13
18-15
18-17
18-19
18-23
18-25
18-27
18-29
2-34
17-53
3-36
3-43
6-30
34
34
3-2
3-2
223
10-5
8-9
11-7

ﬂ

ISSFB
IS$GE
ISSGRQ
IS$GRS
IS$GSA
IS$GSO
IS$GSS
IS$RM
ISSRS
IS$SM
IS$STA
IS$TS
ISNSC
ISNSL
ISN$RC
ISN$UC
ISREM$

JSTRSA

KLMSIF

L$xy series
LDISK$
LIMIT$
LINEQ
LIST$CMD
LNSSET

Index of Subroutines by Name

Free an ISC message buffer.

Get an ISC session exception.

Get an ISC session request.

Get an ISC session request response.

Get ISC session attributes.

Get list of ISC sessions owned by this server.
Get ISC session status information.

Receive an ISC message.

Request an ISC session.

Send an ISC message.

Get ISC current session statistics.

Terminate an ISC sessi(;n.

Catalog ISC server’s Low Level Name,

Look up ISC server’s Low Level Name.
Recatalog ISC server’s Low Level Name File,
Uncatalog (delete) ISC server’s Low Level Name.

Determine whether an open file system object is local or
remote.

Left-justify, right-justify, or center a string.
Get serialization data about Prime software.

FORTRAN compiler complex number loading.

Return information on the system’s disk table.

Set and read various timers.

Solve a system of linear equations (single precision).
Return a list of commands valid at mini-command level.

Modify user’s search rules to permit dynamic linking to
EPF library.

< < < € € € € € € € € <€ < <« < <

ey
Jud

I

II
11
v
II
II

10-7
11-5

8-12
144
14-2
14-7
10-12
83
10-9
14-10
11-3
7-5
-7
7-8
7-9
4-56

10-13

5-10

B-5

4-58
8-30
18-7
6-15
5-27

Second Edition SX-11

LOGOS$$
LONSCN
LONS$R
LOV$SW

LSTR$A
LSUBSA
LUDEV$
LUDSK$
LVSGET
LVSSET

MS$xy series
MADD
MADJ
MCHRS$A
MCOF
MCON
MDET
MGSET$
MIDN
MINV
MKLBS$F
MKONSF
MKONS$P
MKONUS$
MMSMLPA
MM$MLPU
MMLT
MOVEW$

SX-12 Second Edition

Subroutines Reference lll: Operating System

Log out a user.
Switch logout notification on or off.
Read logout notification information.

Indicate if the login-over-login function is currently
permitted.

Locate one string within another.

Locate one substring within another.

Return a list of devices that a user can access.
List the disks a given user is using.

Retrieve the value of a CPL local variable.

Set the value of a CPL local variable.

FORTRAN compiler multiplication routines.
Matrix addition (single precision).

Calculate adjoint matrix (single precision).

Move a character from one packed string to another.
Calculate signed cofactor (single precision).

Set matrix to constant matrix (single precision).
Calculate matrix determinant (single precision).
Set the receiving state for messages.

Set matrix to identity matrix (single precision).
Calculate inverted matrix (single precision).
Convert FORTRAN statement label to PL/I format.
Create an on—unit (for FTN users).

Create an on-unit (for any language except FTN).
Create an on—unit (for PMA and PL/1 users).

Make the last page of a segment available.

Make the last page of a segment unavailable.
Matrix multiplication (single precision).

Move a block of memory.

I
111
III
I

v
v
111
Il
I
II

v
v

Iv
v
v
HI
v
Iv
I
III
11
III
111
I
v
I

2-35
5-24
5-25
2-20

10-15
10-17
2-37
4-61
6-17
6-19

B-8
18-9
18-11
10-19
18-13
18-15
18-17
94
18-19
18-21
7-21
7-22
7-24
7-26
4-5
46
18-23
6-32

J

MRG1$S
MRG2$S
MRG3$S
MSCL
MSG$ST
MSTR$A
MSUB
MSUBSA
MTRN

N$xy series
NAMSAD_PORTAL
NAMSL_GMT
NAMS$SRM_PORTAL
NAMEQ$

NLENS$A

NTSLTS

O$AAQ1
O$ACO03
O$AC15
O$ADO7
O$ADO8
OS$ALxx
O$AL04
O$AL06
O$AL14
O$AMOS
O$AM10

Index of Subroutines by Name

Merge sorted files.

Return next merged record.

Close merged input files.

Matrix addition (single precision).
Return the receiving state of a user.
Move one string to another.

Matrix subtraction (single precision).
Move one substring to another.

Calculate transpose matrix (single precision).

FORTRAN compiler negation functions.
Convert an existing directory into a portal.
List accessible partitions and portals.

Delete a portal entry in the specified directory
Compare two character strings.

Determine the operational length of a string.

Return characteristics of PRIMOS network terminal
service line.

Write ASCII to terminal or command stream.
Parallel interface to card punch.
Parallel interface card punch and print.
‘Write compressed ASCII to disk.
Write ASCII uncompressed to disk.
Interface to various printer controllers.
Centronics line printer.

Parallel interface to MPC line printer.
Versatec printer/plotter interface.
Write ASCII to 9-track tape.

Write ASCII 10 7-track tape.

18"
v

v
I
v
v
v
v

II
II
III
v
v

v
v
v
v
v

v
v
v
v
v

17-34
17-38
17-39
18-25
9-2

10-21
18-27
10-23
18-29

6-5
7-31
7-32
D-3
5-7
74
7-3
7-3
7-18
D-12
D-12

Second Edition SX-13

Subroutines Reference Ill: Operating System

O$AM11
0$AM13
O$BDO7
O$BMO0S5
O$BM10
O$BP02
OPENS$A
OPNPSA
OPNVS$A
OPSR$
OPSRS$
OPVP$A
OVERFL

P1IB
P1IN
P10OB
P10U
PASDEL
PASLST
PASSET
PARSRV
PERM
PHANTS$
PHNTMS$
PLI1SNL
POSNS$A
PRERR
PRISRV
PRJID$

SX-14 Second Edition

Write BCD to 7-track tape.

Write EBCDIC to 9-track tape.

Write binary to disk.

Write binary to 9-track tape.

Write binary to 7-track tape.

Punch paper tape (binary).

Open file specified by filename.

Read filename and open.

Open filename with verification and delay.
Locate a file using a search list and open the file.
Locate a file using a search list and a list of suffixes.

Read filename and open, or verify and delay.

Check if an overflow condition has occurred (obsolete).

Input character from paper tape reader to Register A.
Input character from paper tape to variable.

Output character from Register A to paper-tape punch.
Output character from variable to paper-tape punch.
Remove an object’s priority access.

Obtain the contents of an object’s priority ACL.

Set priority access on an object.

Return a logical value indicating ACL and quota support.

Generate matrix permutations.

Start a phantom process (obsolete).

Start a phantom process.

Perform a nonlocal GOTO.

Position in a file.

Print an error message (obsolete).

Return operating system revision number.

Return the user’s project identifier.

Iv
v
v
v
v
v
v
v
v
II

II

v
I

v
v

v
II
II
II

v
1II
III
IIT
Iv
111
I
I11

D-12
D-12
5-9
D-12
D-12
6-14
15-6
15-8
15-10
7-3
7-9
15-13
D9

6-16
6-18
6-17
6-19
2-24
2-25
2-27
4-69
18-31
D-10
5-27
7-28
15-16
D-11
2-22
2-40

P

3D

)

PRWFS$$
PTIMES$
PWCHKS$

QS$READ
QS$SET
QUICK
QUITS

RADXEX
RANDSA

RDS$CE_DP
RDS$SCED
RDASC
RDBIN
RDENS$$
RDLINS$

RDTKS$$
READYS
RECYCL
REMEPF$
REST$$
RESUS$$
RLSE$S
RMSGD$
RNAMSA
RNDISA
RNUMSA

Index of Subroutines by Name

Read, write, position, or truncate a file.
Return amount of CPU time used since login.

Validate syntax of a password.

Return directory quota and disk record usage information.
Set a quota on a subdirectory of the current directory.
Partition exchange sort.

Determine if there are pending quits.

Radix exchange sort.

Generate random number and update seed, using 32-bit
word size and the linear congruential method.

Return caller’s current command environment breadth.
Return caller’s current command environment breadth.
Read ASCII from any device.

Read binary from any device.

Position in or read from a directory.

Read a line of characters from a compressed ASCII disk
file.

Parse a command line.

Display PRIMOS command prompt.

Tell PRIMOS to cycle to the next user (obsolete).
Remove an EPF from a user’s address space.
Restore an R—-mode executable image.

Restore and resume an R-mode executable image.
Get input records after SETUS.

Receive a deferred message.

Prompt, read a pathname, and check format.
Initialize random number generator seed.

Prompt and read a number (in any format).

111
III

II
v
11

v
v

I
I
v
v
II
1I

I
III
I
II

111
I
v
111
v
v
v

4-M
241
2-42

4-79

17-54
3-65

17-55
13-2

6-21
6-21

3-22
243
D-14
5-29
5-18
5-20
17-26
9-6
11-2
13-4
114

Second Edition SX-15

RPL$
RPOSS$SA
RRECL
RSEGACS
RSTR$A
RSUBSA
RTRNS$S
RVONSF
RVONUS$
RWND$A

S$xy series
SATRS$
SAVES$
SCHAR
SEM$CL
SEMS$DR
SEMS$NF
SEMS$OP
SEMSOU
SEMSTN
SEMSTS
SEMS$TW
SEM$WT
SETRC$
SETUS$S
SGD$DL
SGD$EX

SGDS$SOP

SX-16 Second Edition

Subroutines Reference lll: Operating System

Replace one EPF runfile with another.

Return position of file.

Read disk record.

Determine access to a segment.

Rotate string left or right.

Rotate substring left or right.

Get sorted records.

Revert an on-unit (for FTN users).

Revert an on-unit (for any language except FTN).

Reposition file.

FORTRAN compiler subtraction routines.

Set or modify an object’s attributes.

Save an R-mode executable image.

Store a character into an array location.

Release (close) a named semaphore.

Drain a semaphore.

Notify a semaphore.

Open a set of named semaphores.

Open a set of named semaphores.

Periodically notify a semaphore.

Return number of processes waiting on a semaphore.
Wait on a specified named semaphore, with timeout.
Wait on a specified named semaphore.

Record command error status.

Prepare sort table and buffers for CMBNS.

Delete a segment directory.

Find out if there is a valid entry at the current position
within the segment directory on a specified unit.

Open a segment directory entry.

II

v
vV
I
v
v
v
08
111
v

1I

111
III
111
III
I
I
III
III
111
III
111
II1
v
II

I

11

5-31
15-17
D-5
2-23
10-26
10-29
17-28
7-29
7-30
15-18

B-8
4-87
5-21
6-35
8-16
8-17
8-18
8-20
8-20
824
8-26
8-27
8-28
5-14
17-22
492
4-93

4-94

3

)

SGDR$$
SGNLSF
SHELL
SID$SGT
SIGNLS
SIZE$
SLEEP$
SLEPS$I
SLITE
SLITET
SMSG$
SNCHK$
SPSREQ
SPASSS
SPOOLS$
SRSABS
SRSABSDS
SR$ADB

SR$ADDB

SR$ADDE

SR$SADE

SR$CRE
SR$CREAT
SRSDEL
SR$DSA
SR$DSABL
SR$ENA

Index of Subroutines by Name

Position, read, or modify a segment directory.
Signal a condition.

Diminishing increment sort.

Return user number of initiating process.
Signal a condition.

Return the size of a file system entry.

Suspend a process for a specified interval.
Suspend a process (interruptible).

Set the sense light on or off (obsolete).

Test sense light settings (obsolete).

Send an interuser message.

Check validity of system name passed to it.
Insert a file into the spool queue.

Set the owner and nonowner passwords on an object.
Insert a file into the spool queue.

Disable optional rules enabled by SRSENABL.
Disable optional rules enabled by SRS ENABL.

Add a rule to the start of a search list or before a specified
rule within the list.

Add a rule to the start of a scarch list or before a specified
rule within the list.

Add a rule to the end of a search list or after a specified
rule within the list.

Add a rule to the end of a search list or after a specified
rule within the list.

Create a search list.
Create a search list.
Delete a search list.
Disable an optional search rule enabled by SREENABL.
Disable an optional search rule enabled by SRSENABL.

Enable an optional search rule.

II

I
v
11
111
II

11
I
1M1
111
III

II

II
II
I

4-96
7-31
17-56
2-44
7-33
4-102
8-34
8-35
D-15
D-16
9-8
2-25
7-12
2-29
7-10
7-16
7-16
7-19

7-19

7-22

7-22

7-25
7-25
7-27
7-29
7-29
7-32

Second Edition SX-17

SRSENABL
SR$EXS
SR$EXSTR
SR$FR_LS

SR$FRL

SR$INI
SRSINIT
SRS$LIS
SRSLIST
SRSNEX
SRSNEXTR
SRSREA
SR$READ
SR$REM
SR$SET
SR$SETL
SR$SSR
SRCH$$
SRSFX$
SRS$GN
SRS$GP

SRS$LN
SRTFS$S
SS$ERR
SSTR$A
SSUBSA
SSWTCH
ST$SGS

SX-18 Second Edition

Subroutines Reference Ill: Operating System

Enable an optional search rule.
Determine if a search rule exists.
Determine if a search rule exists.

Free list structure space allocated by SR$LIST or
SR$READ.

Free list structure space allocated by SRSLIST or
SRSREAD.

Initialize all search lists to system defaults.
Initialize all search lists to system defaults.

Return the names of all defined search lists.

Return the names of all defined search lists.

Read the next rule from a search list.

Read the next rule from a search list.

Read all of the rules in a search list.

Read all of the rules in a search list.

Remove a rule from a search list.

Set the locator pointer for a search rule.

Set the locator pointer for a search rule.

Set a search list via a user-defined search rules file.
Open, close, delete, or verify existence of an object.
Search for a file with a list of possible suffixes.
Get server name,

Get process numbers of all processes that have the same
server name.

List all active ISC server names.
Sort several input files.

Signal an error in a subsystem.

Shift string left or right.

Shift substring left or right.

Test sense switch settings (obsolete).

Return maximum number of static segments.

I
II
II
II

11

II
II
II
II
II
II

II
II
II
II
II
II
II

A"
11
Iv
v
I
III

7-32
7-35
7-35
7-39

7-39

7-41
7-41
7-43
7-43
7-47
747
7-52
7-52
7-56
7-59
7-59
7-62
4-105
4-114
7-10
7-11

7-13
17-16
5-16
10-31
10-33
D-17
4-25

J

)

STR$AL
STR$AP
STRS$AS
STR$AU
STRSFP
STRSFR
STRSFS
STRSFU
SUBSRT
SUBSRT
SUSR$
SYN$SCHCK
SYNS$SCK

SYNSCR
SYNSCREA
SYNS$DE
SYNSDEST
SYNS$SGC
SYN$GCHK
SYNSGCRE
SYNSGD
SYNS$SGDST
SYN$SGK

SYNSGL
SYNSGLST
SYNSGR
SYNSGRTR
SYNSGT

Index of Subroutines by Name

Allocate user-class dynamic memory.
Allocate process-class dynamic memory.
Allocate subsystem-class dynamic memory.
Allocate user-class dynamic memory.

Free process-class dynamic memory.

Free user-class dynamic memory.

Free subsystem-class dynamic memory.
Free user-class dynamic memory.

Sort file on ASCII key. (V-mode)

Sort file on ASCII key. (R-mode)

Test if current user is supervisor.

Return total of notices or waiters on a synchronizer.

Return total of notices or waiters on a synchronizer

(FTN).

Create an event synchronizer (FTN).
Create an event synchronizer.

Destroy an event synchronizer (FTN).
Destroy an event synchronizer.

Create an event group (FTN).

Return total of notices or waiters on an event group.

Create an event group.
Destroy an event group (FTN).
Destroy an event group.

Return total of notices or waiters on an event group

(FTN).

List total of groups in server and their identifiers (FTN).

List total of groups in server and their identifiers.
Retrieve a notice from a group (FTN).
Retrieve a notice from a group.

Perform a timed wait on a group (FTN).

I
I
I
I
III
II1
III
III
v
14"
1

< € € < < € < <€ < <

< <€ < <« <

47
4-8
4-9
4-10
4-11
4-12
4-13
4-14
17-10
17-41
2-45
42
4-2

3-18
3-18

4-12
4-12
3-15
3-15
3-13

Second Edition SX-19

SYNSGTWT
SYNSGW
SYNSGWT
SYNSIF
SYNSINFO
SYNSLG

SYNSLIST
SYNSLS

SYNSLSIG
SYNSMV
SYNSMVTO
SYNSPO
SYNS$POST
SYNSREMV
SYN$SRM
SYNSRTRV
SYNSRV
SYNSTMWT
SYNSTW
SYNSWAIT
SYNSWT

TSAMLC
T$CMPC
TSLMPC
TSMT
T$SPMPC
T$SLCO

SX-20 Second Edition

Subroutines Reference Ill: Operating System

Perform a timed wait on a group.

Wait on an event group (FTN).

Wait on an event group.

Return information about a synchronizer (FTN).
Return information about a synchronizer.

List total of synchronizers in group and their identifiers

(FTN).

List total of synchronizers in server and their identifiers.

List total of synchronizers in server and their identifiers

(FIN).

List total of synchronizers in group and their identifiers.

Move a synchronizer into a group (FTN).

Move a synchronizer into a group.

Post a notice on a synchronizer (FTN).

Post a notice on a synchronizer.

Remove a synchronizer from a group.

Remove a synchronizer from a group (FTN).
Retrieve a notice from an event synchronizer.
Retrieve a notice from an event synchronizer (FTN).
Perform a timed wait on an event synchronizer.
Perform a timed wait on an event synchronizer (FTN).
Wait on an event synchronizer.,

Wait on an event synchronizer (FTN).

Communicate with AMLC driver.
Input from MPC card reader.
Move data to MPC line printer.
Raw data mover for tape.

Raw data mover for card reader.

Communicate with SMLC driver.

< < < < < <

< <

< < <€ € € € € € € < < < <

v
v
v
v
v

3-13
3-11
3-11
4-6
46
4-8

4-10
4-10

4-8
37
3-7
2-7
2-7
3-9
3-9
213
2-13
2-11
2-11
2-9
2-9

8-22
7-33
7-15
7-38
7-35
8-3

3

T$VG

T1IB

T1IN

T10B

T10U

TEMPSA

TEXTO$

TISMSG

TIDEC

TIHEX

TIMDAT

TIMESA

TIOCT

TL$SGS

r TMRSCANL
TMRS$CN
TMRS$CR
TMRS$CREA
TMR$DE
TMRSDEST

r TMRS$GINF
TMRSGTIM
TMR$GTMR
TMRSIF
TMRSLIST
TMRSLOCALCONVERT
TMRSLS

TMRSLU
TMRS$SA

Index of Subroutines by Name

Interface to Versatec printer.

Read a character (function) from PMA into Register A.
Read a character (procedure).

Write one character from Register A.

Write one character.

Open a scratch file.

Check filename for valid format (obsolete).
Display standard message showing times used.
Read a decimal number.

Read a hexadecimal number.

Return timing information and user identification.
Return time of day.

Read an octal number.

Return highest segment number.

Cancel a timer.

Cancel a timer (FTN).

Create a timer (FTN).

Create a timer.

Destroy a timer (FIN).

Destroy a timer.

Return permanent time information.

Return current system time.

Return information about a timer.

Return permanent time information (FTN).

List total number of timers in server and their identifiers.

Convert local time to Universal Time.

List total number of timers in server and their identifiers

(FTN).
Convert local time to Universal Time (FTN).

Set an absolute timer (FTN).

v
111
III
11
III
v
m
III
11
11

7-21
3-28
3-29
3-52
3-53
15-19
D-18
2-46
3-30
3-31
2-47
12-7
3-32
4-26
5-15
5-15
5-6
5-6
5-8
5-8
2-49
2-51
5-16
249
5-19
2-52
5-19

2-52
5-9

Second Edition SX-21

TMRS$SABS
TMRS$SI
TMRSSINT
TMR$SR
TMR$SREP
TMRSTI
TMR$TM
TMRSUL
TMR$UNIVCONVERT
TNCHKS$
TNOU
TNOUA
TODEC
TOHEX
TONL
TOOCT
TOVFDS$
TREESA
TRNC$A
TSCNS$SA
TSRC$$

TTYS$SIN
TTY$OUT
TTY$RS
TYPESA

UID$BT
UID$CH
UNITS$A

SX-22 Second Edition

Subroutines Reference lll: Operating System

Set an absolute timer.

Set an interval timer (FTN).

Set an interval timer.

Set a repetitive timer (FTN).

Set a repetitive timer.

Return information about a timer (FTN).
Return current system time (FTN).

Convert Universal Time to local time (FTN).
Convert Universal Time to local time.

Verify a supplied string as a valid pathname.

Write characters to terminal, followed by NEWLINE.

Write characters to terminal.

Write a signed decimal number.

Write a hexadecimal number.

Write a NEWLINE.

Write an octal number.

Write a decimal number, without spaces.
Test for a pathname.

Truncate a file.

Scan the file system tree structure.

Open, close, delete, or find a file anywhere in the file
structure.

Check for unread terminal input characters.
Check for characters in user’s terminal input buffer.
Clear the terminal input and output buffers.

Determine string type.

Return unique bit string.
Convert UID$BT output into character string.

Check for file open.

III
111
I
v
v
v

III
III
III
v

I
III
v

5-11
5-11
5-13
5-13
5-16
2-51
2-54
2-54
4-121
3-45
346
3-47
3-48
349
3-50
3-51
10-35
15-21
15-22
A-17

3-66
3-67
3-68
10-38

6-37
6-38
15-27

Yy)

UNITSS$

UNOSGT
UPDATE
USER$
UTYPE$

VALID$

WILD$

WRASC
WRBIN

WRECL
WTLINS

YSNOSA

Z380

Index of Subroutines by Name

Return caller’s minimum and maximum file unit
numbers.

List users with same name as caller.

Update current directory (PRIMOS 1I only) (obsolete).

Return user number and count of users.

Return user type of current process.

Validate a name against composite identification.

Return a logical value indicating whether a wildcard
name was matched.

Write ASCIL
Write binary to any output device.

Write disk record.

Write a line of characters to a compressed ASCII file.

Ask question and obtain a yes or no answer.

Clear double-precision exponent.

IT

111
I
I
111

I

1I

v
v
v

v

4-124

2-56
D-20
2-26
2-57

2-59

4-125

4-3
4-7
D-8
4-126

11-7

Second Edition SX-23

N

Index

Abbreviations
enabled/disabled, 2-3
filename for user’s, 2-64
using, 2-31
Access rights
named, 8-8
segments, 2-23
ACCESS_VIOLATIONS condition, A~2
ACL groups, currently belonging to, 2-65
ACL protection, current setting of, 2-70
Addressing modes, 1-13
ALARMS condition, 8-31, A-2
Allocate memory. See Memory allocation
AMLC functions, 3-61
ANYS condition, 7-3, 7-26, A-2
ANYS on-unit, 7-3, 7-6, 7-7, 7-33, A-1
stack scanning for, 7-41
AREA condition, A-3
ARITHS condition, A-3
Arrays
declaring, 1-8
getting character from, 6-24
storing character in, 6-35
ASSIGN command, 2-38
Assigned lines, 3-3
Attach points, getting information about,
2-67

B

BAD_NONLOCAL_GOTOS condition,
A3

BAD_PASSWORDS condition, A4

BAD_RECORD_ADDRESSS$ condition,
A4

BASIC/VM language, data type
equivalents, B-1

Batch jobs, input and output, 3-3
Bit strings
generating a unique value, 6-37
setting, 1-11
Blank characters
in character strings, 6-26
in command lines, 3-24
BREAK key. See CONTROL-P

C

C language
321X mode, 1-8
64V mode, 1-8
condition mechanism subroutines, 7-3
data type equivalents, B-1
nonlocal GOTO, 74
terminal input, 3-14
terminal output, 3-36
Calling functions, 1-5
Calling subroutines, 14
Carriage returns
no line feed, 3-60
output line with, 345
output line without, 346
output to terminal, 3-49
Carrier signal, 3-61
Case, convert lowercase to uppercase,
6-26
CFH. See Condition Frame Header
Character strings
case conversion, 6-26
comparing, 6-33
generating a unique value, 6-38
output to buffer, 6-30
output to terminal, 3-39, 345, 3-46
parsing, 6-25

Characters
echoing at input, 3-5, 3-6
from Register A, 3-52
in array, 6-24, 6-35
input, 3-5, 3-6, 3-7, 3-28,3-29
output to terminal, 3-53
read one, 3-28, 3-29
CLEANUPS condition, 7-46, 7-49, A-5
program example, 7-16
CLEANUPS on-unit, 744
COBOL language
data type equivalents, B-1
memory allocation subroutines, 4-1
COMI files. See Command input files
COMI_EOFS condition, 3-2, A-5
Comma characters, in command lines,
3-24
Command input files
active, 2—64
end of file, A-5
routing input to file or terminal, 3-57
starting a phantom from, 5-27
using, 3-2
Command levels
control subroutines, 5-4
getnew, 5-6
get new after error, 5-5
return on condition, D4
return to PRIMOS, 5-7
user’s current, 2—-64
Command line
abbreviations, expanding, 2-31
comments, 3-25
delimiters, 3-24
editing, 3-14, 3-17
parsing, 3-22
prompts, 2-5, 2-43

Second Edition X-1

Subroutines Reference llI: Operating System

Command line (Continued)
read raw text, 3-27
return to, 5-7
Command output files
active, 2-64
getting information about, 2-67
routing output to file or terminal, 3-58
status of, 3-56
terminal string output, 3-43
Comments, in character strings, 6-26
COMO file. See Command output files
Computer model numbers. See CPU
Condition Frame Header, 7-22, 7-39,
A-1
Condition handler, stack frame, 7-44
Condition mechanism, 7-1
condition name, 7-4
creating on—units, 7-1, 7-22, 7-24,
7-26
data structures for, 7-39
debugging considerations, 7-7
disabling EXITS$ signalling, 7-36
disabling on—unit, 7-29, 7-30
enabling EXIT$ signalling, 7-38
examples, 7-7
nonlocal GOTO, 7-2, 7-28
on-unit descriptor block, 7-49
servicing quit requests, 3-65
signalling a condition, 7-33
subroutines, 7-19
subroutines (language table), 7-3
Conditions, 7-1
raising, 7-2
raising when timers expire, 8-30
requiring multiple on—units, 7-20
signalling, 7-33
signalling (in FTN), 7-31
Control panel light settings, D-2, D-15,
D-16, D-17
CONTROL-P
enable/disable, 3-55
pending, 3-65
preventing interruption by, 7-11
waiting on semaphore, 8-10
CONVERSION condition, 6-3, 6-4, 6-5,
6-7,6-9, A-5
Cooperating processes, 8-1, 8-6
CPL language
condition mechanism, 7-3
on-unit coding example, 7-10, 7-11

X-2 Second Edition

CPL programs
input from user terminal, 3-2
starting a phantom from, 5-27
CPU
metering information, 2-74
model ID number, 2-7
real time clock tick value, 2-75
state when condition raised, 7-42
CPU time
amount remaining, 2-65
CPU ticks, 2-75
displaying time used, 246
getting current, 241, 247, 2-81
interrupt process use, 2—77
maximum for process, 8-30
maximum time slice, 2-28
since system boot, 2-75
watchdog limit, 8-31, A-5
CPU_TIMERS condition, 8-31, A-5
Crawlout, 7-18
calling SGNLSF, 7-32
calling SIGNLS, 7-34
flag in condition frame header, 741
machine state, 7-43
program counter backup, 7-40
stack frame, 7-44
CRLE See Carriage returns

D

DAMAGED_RATS condition, A-6
DATA SET BUSY, 3-60
Data types, B-1
(2) CHAR, 3-3
(n) FIXED BIN, 1-7
BIT(1), 1-7
BIT(n) ALIGNED, 1-11
CHAR(*), 1-7
CHAR(*) VAR, 1-7
CHAR(n), 1-7
CHAR(n) VAR, 1-7
CONVERSION condition, A-5
FIXED BIN, 1-7
FIXED BIN(31), 1-7
FLOAT BIN, 1-7
FLOAT BIN(47), 1-7

numeric conversion subroutines, 6-2

POINTER, 1-8

POINTER OPTIONS (SHORT), 1-8

terminal output, 3-37
Date
ASCII format, 6-13
backup of disk partition, 2—62
conversion subroutines, 6-11
converting ASCII to FS—date format,
6-13
converting FS—date format to ASCII,
6-15, 6-17
converting FS—date format to
quadseconds, 6-12
converting quadseconds to FS—date
format, 6-19
file-system date format, C-1
getting current, 2-11, 2-47
ISO format, 613, 6-15
software distribution, 5-12
USA format, 6-13
used for unique string generation, 6-37
visual format, 6-13, 6-17
DBG symbolic debugger, 7-7
Deadly embrace, 8-11
Deallocate memory space. See Free
memory space
Decimal numbers
converling to integers, 6-3, 6-5
input from terminal, 3-30
output to terminal, 3-39, 347
Declaring
a function, 1-5
a structure, 1-8
a subroutine, 1-4
an array, 1-8
Devices
listing accessible, 2-37
release all assigned, 5-8
Directories, update current (PRIMOS II),
D-20
Disk partitions
backup date, 2-62
free records in, 2-62
getting information about, 2-61
maximum size, 2-62
metering information, 2-86
remote, 2-62
shutdown, effect on open semaphores,
8-22
DISK_READ_ERRS condition, A-6
DSM server, send message to, 2-12

J

N
N\

Dynamic segments, 4-24, 4-26
DYNTs. See entrypoints

E

EFH. See Extended Stack Frame Header
Encrypting passwords, 6-23
ENDFILE condition, A-7
program example, 7-15
ENDPAGE condition, A-7
Entry Control Block, 7-43
for on—units, 744
on-unit descriptor block pointer to,
749
pointer to, 7-46
stack frame header pointer to, 7-46
stack frame procedure’s, 7-41
ENTRY$ search list
entrypoint accessible using, 2-4
subroutine libraries listed, 1-14
Entrypoints, locating, 2-4
EPFs
allocate space for return value, 4-16,
4-21
entrypoints accessible, 2—4
exiting from, 5-7
files, 5-2
free space for return value, 4-22
memory allocation subroutines, 4-15
recursive—mode programs, 5-2
return codes, 5-14
set return value, 4-21
subroutine libraries, 1-14
user segments allocated, 4-24, 4-25,
4-26
Erase character
reading, 3-63
resetting, 5-8
setting, 3-63
user’s current, 2-65
Error codes. See Error messages
ERROR condition, 4-10, 4-14, A-7
Error handling
condition mechanism, 7-1
ERRVEC, D-5,D-8
get new command level, 5-5
averflow condition, D-9

subsystem error, 5~16
terminate program, 5-16
Error messages
condition handling, 74
display ERRVEC message, D-5, D-8
displaying text, 3-34, 3-43
displaying text (obsolete), D-3, D-11
force terminal output, 3-59
return text (obsolete), D-7
standard error codes, 1-12
text of, 2-15
Error prompt. See Prompts
Error vector. See ERRVEC
ERRRTNS condition, A-7
ERRVEC system vector
return contents, D-—8
set contents of, D~5
Executable Program Formats. See EPFs
Exit program, 5-7
disabling EXITS$, 7-36
return stats code, 5-14
unconditional, 5-16
EXITS$ condition, A-8
checking state, 7-37
disabling signalling of, 7-36
enabling signalling of, 7-38
Extended Stack Frame Header, 743

F

Fault Frame Header, 747, A-1
Fault Interceptor Module, 7-47
FFH. See Fault Frame Header
File system, metering information, 2-76
File units
for opening named, 8-20
getting information about, 2-67
File-system date format, C-1
Filenames
check validity (obsolete), D-18
generating unique, 6-38
Files
close all, 5-8
deleted, while semaphores open, 8-22
named semaphores associated with,
8-21
FIM, 747

FINISH condition, A~8
FIXEDOVERFLOW condition, A-8
Forced logout. See Logout
FORTRAN language
calling functions from, 1-5
condition mechanism subroutines, 7-3
converting label values, 7-21
data type equivalents, 7-6, B-1
memory allocation subroutines, 41
nonlocal GOTO, 7-21
on-unit coding example, 7-7
on—unit /O, 7-7
on-—unit restrictions, 7-5
Free memory space, 4-11, 4-12,4-13,
4-14,4-22
Free—format output. See Terminal 1/O
FS—date. See File-system Date Format
Full duplex, 3-61
Functions, 1-1
called as a subroutine, 1-10
calling, 1-5
declaring a function, 1-5
with no parameters, 1-5

G

Greenwich mean time. See Universal
Time

H

Half duplex, 3-61
Hardware
condition descriptions, A~1
control panel lights, D-2, D-15, D-16,
D-17
CPU ID number, 2-7
fault, 7-1
HEAP_ERRORS condition, 4-10, 4-14,
A-8
Hexadecimal numbers
converting to integers, 67
input from terminal, 3-31
output to terminal, 3-39, 3-48
High-order bit, 1-11

Second Edition X-3

Subroutines Reference lli: Operating System

/

I-mode programs, 1-13, 1-14
on-—units supported, 7-4
1/O operations, number of, 2-75
/O time
displaying time used, 2-46
getting current, 2-47, 2-81
per device, 2-87
real time clock ticks, 2-75
since system boot, 2-75
JLLEGAL_INSTS condition, 7-7, A-9
ILLEGAL_ONUNIT_RETURNS
condition, 7-41, A-9
ILLEGAL_SEGNOS condition, A-9
INFORMATION. See Prime
INFORMATION
Initialize Command Environment, 5-8
memory allocation error, 4-8, 4-11
Input buffers
clearing, 368
overflow, 3-61
status, 3-66
Input subroutines. See Terminal [/O
Integer numbers
converting to, 6-3, 6-5, 6-7, 6-9
output to terminal, 3-38, 3-51
Interrupt processes, metering information,
2-77
InterServer Communications,
reinitializing, 5-8
Interuser messages, 9-1
INVALID_REC_ADRS condition, A-10

K

KEY condition, A-10
Key values for parameters, 1-12
Kill character

reading, 3-63

resetting, 5-8

setting, 3-63

user’s current, 2-65

L

Libraries
revision required for software, 5-12
subroutines, 1-13

X—4 Second Edition

LIBRARY_IO_ERRS condition, A-10
Lights on control panel, D-2, D-15,
D-16, D-17
Limit timers, 8-30
Line feeds
input discards, 3-5
output line with, 345
output line without, 346
output to terminal, 3-49
LINKAGE_ERRORS condition, A-11
LINKAGE_FAULTS condition, A-12
LIST_SEMAPHORES command, 8-25
LISTENER_ORDERS condition, A~12
Loading and linking information, 1-2,
1-13,1-14
Locate buffers
forced writes to, 2-83
metering information, 2-76
number of, 2-77
number of reads and writes to, 2-82
writes to disk, 2-82
Locks, 8-12
multiple readers, 8-12
mutual exclusion locks, 8-12
N1 (N readers or 1 writer) locks, 8-12
page locks, 8-14
pooled record locks, §-14
producer—consumer locks, 8-13
record locks, 8-14
Logical values, output to terminal, 340
Login
changing password, 2-29, 2-32
date and time of, 2-81
login—over-login permitted, 2-20
multiple by same user, 2-20
time remaining, 2-65
validating password, 2-42
Logout
all users, 2-35
due to inactivity, 2-65, 8-31
erase and kill characters, 3-64
forced, 2-34
logging out a process, 2-35
maximum CPU time, 8-30
maximum time logged in, 8-31
MIDASPLUS files, 2-36
notification handler, 5-3
notification of, 5-2
phantoms, 2~35, 5-2, 5-24, 5-25
retrieve information on, 5-25

self, 2-35

semaphores, 8-22
LOGOUTS condition, A~13

forced logout, 2-34
Low-order bit, 1-11

M

MAGSAV utility, date of last backup,
2-62
Memory
moving data in, 6-32
number of segments, 2-83
Memory allocation
corruption of, A-8
for EPF return value, 4-16, 4-21
free space, 4-11,4-12, 4-13, 4-14,
4-22
from current procedure stack, 4-3
last page of segment available, 4-5
last page of segment unavailable, 4-6
process—class storage, 4-8, 4-11
semaphores, 8-6
subsystem—class storage, 4-9, 4-13
user—class storage, 4-7, 4-10, 4-12,
4-14
Message facility, 9-1
accept messages, 9-3, 94
check receiver’s status, 9-2
defer messages, 9-3, 94
reject messages, 9-3, 94
return deferred messages, 9-6
send a message, 9-8
send message to DSM, 2-12
set receive state, 94
Metering information, 2-72
Microcode
revision number, 2-8
revision required for software, 5-12
MIDASPLUS, effect of logout, 2-36
Move a block of memory, 6-32
Mutual-exclusion locking, 8-12

N

NAME condition, A-13

Name Server
disk information availability, 2-62
file units information, 2-71

J

M)

(‘ Operator console. See Supervisor process

r

NAMELIST_LIB_ERRS condition, A-13

Naming conventions
passwords, 2-42
projects, 2-33
systems, 2-25
users, 2-33
Newline, See Line feeds
NO_AVAIL_SEGSS condition, A-14
Nonlocal GOTO, 7-28
label for, 7-21
NONLOCAL_GOTOS condition, A-15
NPX_SLAVE_SIGNALEDS condition,
A-15
NULL_POINTERS condition, A-16
Numeric conversion
decimal to 16-bit integer, 6-3
decimal to 32-bit integer, 6-5
hexadecimal to 32-bit integer, 6-7
octal to 32-bit integer, 6-9

o

Obsolete subroutines, D-1
Octal numbers
converting to integers, 6-9
input from terminal, 3-32
output to terminal, 3-39, 3-50
On-unit descriptor block, 7-49
On-units, 7-1
actions taken by, 7-2
ANYS, 7-3,7-6
create, 7-2, 7-24
create (in FTN), 7-22
create (in PL/T), 7-24, 7-26
create (in PMA), 7-26
default on—unit, 7-3, 7-6
descriptor block for, 7-49
disable, 7-2, 7-30
disable (in FTN), 7-29
find additional on—units, 7-20
find correct on—unit, 7-3
FORTRAN J/O restriction, 7-7
invoking condition, 7-42
properties of, 5-2
set, 7-4
stack scanning for, 741

Operating system. See PRIMOS operating

system

OUT_OF_BOUNDSS$ condition, 46,
A-16

Output buffers

clearing, 3-68

status, 3-67
Output subroutines. See Terminal I[/O
OVERFLOW condition, A-17
Overflow condition, D-9
Overflow input buffer, 3-61

P

Page faults
number of, 2-86
number since system boot, 2-76
PAGE_FAULT_ERRS condition, A-17
Pages
last of segment, 4-5, 4-6
locking by user process, 8-14
number in use, 2-85
number on system, 2-85
unavailable, 4-6
PAGING_DEVICE_FULLS condition,
A-17
Parent processes, ID number of, 2-44
Parity error, 3-61
Partitions. See Disk partitions
Pascal language
condition mechanism subroutines, 7-3
data type equivalents, B-1
memory allocation subroutines, 4-1
pointers, 1-8
program example, 3-8
subroutine/function calling restriction,
1-10
terminal output, 3-36
Passwords
changing, 2-29, 2-32
checking syntax, 2-42
computer-generated, 2-29, 2-32
encrypting, 6-23
null, 2-29
PAUSES condition, A-18
PH_LOGOS condition, 5-3, 5-24, A-18
Phantoms, 5-2
determining if a process is, 2-57
input to, 3-3
logging out, 2-35
logout notification, 5-2, 5-24

messages to, 9-10
output from, 3-3
retrieve logout information on, 5-25
starting, 5-27
starting (obsolete), D-10
PL/I language, 1-4
condition mechanism subroutines, 7-3
creating on—units, 7-50
data type equivalents, B-1
error conditions, A-7
labels for nonlocal GOTO, 7-21
on—unit coding example, 7-9, 7-15
PLIO condition, 7-32, 7-34, 7-42
PMA language, condition mechanism
subroutines, 7-3
POINTER_FAULTS condition, A-18
Pointers, output value to terminal, 3-40
Prime INFORMATION, microcode assist
for, 2-8
PRIMOS I
in use, 2-17
update directory, D-20
where loaded, 2-17
PRIMOS operating system
revision number of, 2-22
revision required for software, 5-12
semaphore characteristics, 8-5, 8-6
subroutines located in, 1-14
printf statement, 3-36
Procedures
linkage base, 746
stack base, 7-46
Process IDs. See User number
Process—class storage
allocate for EPF, 4-21
allocate, signal condition, 4-8
free, signal condition, 4-11
Processes
consumer processes, 8-13
cooperating, 8-1, 8-6
coordinating multiple, 8-1, 8-6
delaying, 8-34, 8-35
information about user’s, 2-63
interrupt processes, 2-77
priority and queue information, 2-92
producer processes, 8—13
setting logout timers for, 8-30
spawning process ID, 2-44
supervisor process, 245

Second Edition X-6

Subroutines Reference Ili: Operating System

Processes (Continued)
suspending, 8-34, 8-35
user ID of, 2-56
user type of, 2-57

Project IDs
checking syntax, 2-33
user’s current, 2-40, 2-81

Project names. See Project IDs

Prompts
displaying text, 2-43
returning text, 2-5

Q

Quadseconds, C-1
converting FS—date format to, 6—12
converting to FS—date format, 6-19
Queues
eligibility queue, 2-92, 2-93
high-priority queue, 2-92, 2-93
infinite service, 2-92
low-priority queue, 2-92,2-93
ratios, 2-92
total processes for, 2-92
user’s current priority, 2-83
QUIT interrupt
enable/disable, 3-55
number of, 2-65
pending, 3-65
QUITS condition, A-19
handling, 7-14
program example, 7-7, 7-12, 7-15,
7-16
Quote characters
in character strings, 6-26
in command line, 3-24

R

R-mode programs, 1-13, 1-14
named semaphores not supported, 8—7
on-units not supported, 7-4
restoring, 5-18
restoring and running, 5-20
saving, 5-21
RO_ERRS condition, A-20, D4
Read operations
See also Terminal 1/O
number of synchronous, 2-81

X-6 Second Edition

Ready prompt. See Prompts
Record Availability Table, A-6
RECORD condition, A-19
Records, locking by user process, §—14
Recursive command environment, 5-1
Recursive-mode programs, 5-2
REENTERS condition, 7-13, A-19
Register A, output from, 3-52
Registers
keys register, 7-46
machine, 749
setting in command lines, 3-26
Remote disk partitions, information about,
2-62
Remote IDs, information about a user’s,
2-65
REN command, 7-13
Resource sharing, 8-1
Restarting programs, 5-7
RESTRICTED_INSTS$ condition, A-20
Return. See Exit program
Return codes, setting, 5-14
Reverse channel, 3-60
Revision numbers
CPU microcode, 2-8
Prime~supplied software, 5-11
PRIMOS operating system, 2-22
ROAM
metering information, 2-77, 2-88
number of writes, 2-87
RTNREC_ERRS condition, A-20

S

Scheduler

See also Queues

metering information, 2-91
Search, table of fixed-length entries, 6-21
Search rule lists, reset, 5~8
SEG command, 5-19
Segments

deallocate all, 5-8

dynamic, number allocated to user,

4-24

existence of, 2-23

highest allocatable, 4-26

last page of, 4-5, 4-6

number in use, 2-84

number on system, 2-84

stack root, 745

static, number allocated to user, 4-25

user access to, 2-23
Semaphores, 8-1

aborted notifiers, 8—11

checking number of notifies, 8-26

closing named, 8-16

coding suggestions, 8-10, 8-11

deadly embrace, 8-11

disk shutdown, 8-22

draining a counter, 8-17

external notifies, 8-9

infinite waits, 8—-10

level numbers, 8-11

locks, 8-12

maximum number of notifies, 8-25

minimum value, 8-5

named, 8-7, 8-8

no—free-locks, 8-14

notify, 8-4

notify at timed intervals, 8-24

notifying named, 8-18

notifying numbered, 8-18

number available, 8—6

numbered, 8-6, 8-8

opening named, 8-20

periodic notification of, 8-24

quittable, 8-10

release all, 5-8

releasing named, 8-16

resetting named, 8~17

resetting numbered, 8-17

setting initial value, 8-20, 8-21

subroutines, 8-15

timed, 8-6

timer expiration, 8-9

timers using, 8§-8

timers, maximum number of, 8-25

waiting on, 8-3, 8-28

waiting on a named semaphore, 8-27
Sense light settings, D-2, D-15, D-16,

D-17

Serialization information, 5-10
Server names, resetting, 58
SETRCS condition, 5-14, A-21
Severity codes, 5-14

for DSM messages, 2-12
SIM commands, 2-1
Single—character arguments, 3-3

A

SIZE condition, A-21
Slave processes, deallocate, 5-8
Sleep routines, 8-34, 8-35
Software
condition descriptions, A—1
information about, 5-10
registered with DSM, 2-13

Spawning processes. See Parent processes

Stack

allocating memory on, 4-3

damage recovery, 5-8

on-units on, 7-1

scanning for on-units, 741
Stack frame header, 743
STACK_OVFS condition, A-21
Standard Error Codes, as an argument,

1-12
Standard Fault Frame Header. See Fault
Frame Header

START command, 5-5, 5-6

effect on semaphores, 8-10
Static segments, 4-25
Static-mode programs, 5-1

exiting from, 5-7, 5-14

restarting, 5-7
STOPS$ condition, 5-7, A-22, D4
STORAGE condition, 4-10, A-22
STRINGRANGE condition, A-22
Strings. See Character strings
STRINGSIZE condition, A-22
Structures, declaring, 1-8
Subroutines

addressing modes, 1-13

arguments, varying number of, 1-6

arguments, wrong number of, 1-6

calling, 14

data types, 1-7

declaring a subroutine, 14

key values, 1-12

language support, 1-1

metering, 2-60

optional parameters, 1-9

overview of, 1-1

parameter descriptions, 1-6

setting bit strings, 1-11

system information, 2-2, 2-72

system status, 2-60

unshared code, 1-14

with no parameters, 1-5

’ SUBSCRIPTRANGE condition, A-23

r

SUBSYS_ERRS condition, 5-16, A-23
Subsystem error, 5-16
Subsystem—class storage

allocate, return error code, 4-9

free, return error code, 4-13
Superseded subroutines, D-1
Supervisor process, checking for, 245
SVC_INSTS$ condition, A-23
Synchronizers, delete all, 5-8
SYSCOM directory

error message file, 3-35

key values, 1-12

standard error codes, 1-13
SYSOVL directory

error message file, 3-35

error messages, 2-15
System information subroutines, 2-2,

2-712

System metering, 2-72
System names

checking syntax, 2-25

getting current, 2-19
System status subroutines, 2-60
SYSTEM_STORAGES condition, 4-8,

4-11, A-24

T

Tables, searching for fixed-length entries,
6-21
TERM command, 3-64
Terminal I/O
clear input buffer, 3-68
clear output buffer, 3-68
command output file, 3-56
control subroutines, 3-54
edit input stream, 3-14, 3-17
erase and kill characters, 3-63
full and half duplex, 3-61
input as decimal number, 3-30
input as hexadecimal number, 3-31
input as octal number, 3-32
input character stream, 3-11
input from terminal, 3-2
input next character, 3-5, 3-6, 3-7,
3-28,3-29
input next line, 3-8, 3-13
input pending, 3-66
output 16-bit integer, 3-51

output as decimal number, 3-47

output as hexadecimal number, 348

output as octal number, 3-50

output carriage return, 349

output character, 3-53

output character from register, 3-52

output line with carriage return, 3-45

output line without carriage return,
3-46

output pending, 3-67

output text stream, 3-36, 3-43

parsing an input line, 3-22

print error messages, 3-34

QUIT interrupt, 3-55, 3-65

routing input to file or terminal, 3-57

routing output to file or terminal, 3-58

terminal configuration, 3-60

token types, 3-25

Time

CPU time used, 241, 2-46
daylight savings time, 2-49
displaying, 2-46

elapsed since login, 2-46
file-system date format, C-1
getting current, 2-11, 2-47
1/O time used, 246

of login, 2-81

quadseconds, C-1

real time clock ticks, 2-75
since system boot, 2-75
system time, 2-51

ticks, CPU, 2-75

ticks, real time, 2-75

time zone, 249

timed semaphores, 8-6
Universal Time, 2-49, 2-52, 2-54
watchdog limits, 8-31

Time slices

obtaining maximum, 2-28
size of user’s current, 2-83
size of user’s default, 2-65

Timers

delete all, 5-8

limits for process, 8-30
maximum number of, 8-25
maximum time logged in, 8-31
named, 8-8

numbered, 8-9

sct timers for process, 8-30

Second Edition X-7

Subroutines Reference lll: Operating System

Timers (Continued)

suspending a process, 8-34, 8-35
Tokens

in character strings, 6-25

in command lines, 3-25

register-setting, 3-26
TRANSMITS condition, A-24

u

UIIS condition, A-24
UNDEFINED_GATES condition, A-25
UNDEFINEDFILE condition, A-24
UNDERFLOW condition, A-25
Unique values
bit string, 6-37
character strings, 6-38
Universal Time
converting from, 2-54
converting to, 2-52
difference from local time, 249
USAGE command, 2-72
User IDs
checking a string against, 2-59
checking syntax, 2-33
getting caller’s, 2-47
processes sharing, 2-56
remote IDs information, 2-65
status information, 2-81
User information subroutines, 2-27
User names. See User IDs
User numbers
geltting caller’s, 2-26
getting current user’s, 2-83
invoking process, 2-44
User types
of current process, 2-57
status information, 2-81
User—class storage
allocate, return error code, 4-7
allocate, signal condition, 4-10
free, return error code, 4-12
free, signal condition, 4-14
Users
current project ID, 240
go to next, D-14
metering information, 2-79
number configured, 2-75
number logged in, 2-26

X-8 Second Edition

pages allocated to, 2-85

segment allocation, 2-85, 4-24, 4-25,
4-26

validating composite ID, 2-59

v

V-mode programs, 1-13, 1-14
on-units supported, 74

Version numbers. See Revision numbers

VMFA segments, 2-85

w

WARMSTARTS condition, A-25
Warning prompt. See Prompts
Wired memory, 2-85
Write operations
See also Terminal 1/O
Locate buffer writes to disk, 2-82
writes to disk, 2-82

X

XON-XOFF control, 3-60

V4

ZERODIVIDE condition, A-26

J

D ED

39

Surveys

B

Reader Response Form
Subroutines Reference lll: Operating System
DOC10082-2LA

Your feedback will help us continue to improve the quality, accuracy, and organization of our user publications.

1. How do you rate this document for overall usefulness?

[] excellent [] verygood [] good (] fair] poor

2. What features of this manual did you find most useful?

3. What faults or errors in this manual gave you problems?

4. How does this manual compare to equivalent manuals produced by other computer companies?

(] Much better (] Slightly better [] About the same
] Much worse] Slightly worse] Cantjudge

5. Which other companies’ manuals have you read?

Name:

Position:

Company:

Address:

Postal Code:

Il e

NECESSARY

IF MAILED
IN THE

UNITED STATES

First Class Permit #531 Natick, Massachusetts 01760

BUSINESS REPLY MAIL

Postage will be paid by:

Prime.

Attention: Technical Publications
Bldg 10
Prime Park, Natick, Ma. 01760

	Front Cover
	Title Page
	i
	Copyright
	ii
	How To Order Technical Documents
	iii
	Reading Path for PRIMOS Documentation
	iv
	Contents
	v
	vi
	vii
	viii
	ix
	x
	xi
	xii
	About This Book
	xiii
	xiv
	xv
	xvi
	xvii
	xviii
	Chapter 1
	Overview of Subroutines
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6
	1-7
	1-8
	1-9
	1-10
	1-11
	1-12
	1-13
	1-14
	Chapter 2
	Core Operating System Services
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	2-9
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	2-51
	2-52
	2-53
	2-54
	2-55
	2-56
	2-57
	2-58
	2-59
	2-60
	2-61
	2-62
	2-63
	2-64
	2-65
	2-66
	2-67
	2-68
	2-69
	2-70
	2-71
	2-72
	2-73
	2-74
	2-75
	2-76
	2-77
	2-78
	2-79
	2-80
	2-81
	2-82
	2-83
	2-84
	2-85
	2-86
	2-87
	2-88
	2-89
	2-90
	2-91
	2-92
	2-93
	2-94
	Chapter 3
	User Terminal I/O
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	3-8
	3-9
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	3-50
	3-51
	3-52
	3-53
	3-54
	3-55
	3-56
	3-57
	3-58
	3-59
	3-60
	3-61
	3-62
	3-63
	3-64
	3-65
	3-66
	3-67
	3-68
	Chapter 4
	Memory Allocation
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8
	4-9
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	Chapter 5
	Program Control
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	5-7
	5-8
	5-9
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	Chapter 6
	Conversion Routines and Other Utilities
	6-1
	6-2
	6-3
	6-4
	6-5
	6-6
	6-7
	6-8
	6-9
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	Chapter 7
	Condition Mechanism
	7-1
	7-2
	7-3
	7-4
	7-5
	7-6
	7-7
	7-8
	7-9
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	7-33
	7-34
	7-35
	7-36
	7-37
	7-38
	7-39
	7-40
	7-41
	7-42
	7-43
	7-44
	7-45
	7-46
	7-47
	7-48
	7-49
	7-50
	Chapter 8
	Semaphores and Timers
	8-1
	8-2
	8-3
	8-4
	8-5
	8-6
	8-7
	8-8
	8-9
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	8-24
	8-25
	8-26
	8-27
	8-28
	8-29
	8-30
	8-31
	8-32
	8-33
	8-34
	8-35
	Chapter 9
	Message Facility
	9-1
	9-2
	9-3
	9-4
	9-5
	9-6
	9-7
	9-8
	9-9
	9-10
	Appendix A
	Standard Conditions
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6
	A-7
	A-8
	A-9
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	Appendix B
	Data Type Equivalents
	B-1
	B-2
	B-3
	Appendix C
	File-system Date Format
	C-1
	Appendix D
	Superseded Routines
	D-1
	D-2
	D-3
	D-4
	D-5
	D-6
	D-7
	D-8
	D-9
	D-10
	D-11
	D-12
	D-13
	D-14
	D-15
	D-16
	D-17
	D-18
	D-19
	D-20
	Index of Subroutines by Function
	FX-1
	FX-2
	FX-3
	FX-4
	FX-5
	FX-6
	FX-7
	FX-8
	FX-9
	FX-10
	FX-11
	FX-12
	FX-13
	FX-14
	FX-15
	FX-16
	FX-17
	FX-18
	FX-19
	FX-20
	FX-21
	FX-22
	FX-23
	FX-24
	FX-25
	FX-26
	FX-27
	FX-28
	FX-29
	FX-30
	Index of Subroutines by Name
	SX-1
	SX-2
	SX-3
	SX-4
	SX-5
	SX-6
	SX-7
	SX-8
	SX-9
	SX-10
	SX-11
	SX-12
	SX-13
	SX-14
	SX-15
	SX-16
	SX-17
	SX-18
	SX-19
	SX-20
	SX-21
	SX-22
	SX-23
	Index
	X-1
	X-2
	X-3
	X-4
	X-5
	X-6
	X-7
	X-8
	Surveys
	
	

